

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Git API server for the Remix LearnEth Plugin

The plugin is here: https://github.com/bunsenstraat/remix-learneth-plugin
It needs an API to clone git repositories so it can scan them and return the structure of the repo to be used in a list.

requirements

	redis

	node >10

It is uses the default system temp directory to clone the repo’s.

config

config.json holds a whitelist of allowed urls, this is by default the REMIX IDE client

build

run npm build
use pm2 to start

1.3.7 / 2019-04-29

	deps: negotiator@0.6.2

	Fix sorting charset, encoding, and language with extra parameters

1.3.6 / 2019-04-28

	deps: mime-types@~2.1.24

	deps: mime-db@~1.40.0

1.3.5 / 2018-02-28

	deps: mime-types@~2.1.18

	deps: mime-db@~1.33.0

1.3.4 / 2017-08-22

	deps: mime-types@~2.1.16

	deps: mime-db@~1.29.0

1.3.3 / 2016-05-02

	deps: mime-types@~2.1.11

	deps: mime-db@~1.23.0

	deps: negotiator@0.6.1

	perf: improve Accept parsing speed

	perf: improve Accept-Charset parsing speed

	perf: improve Accept-Encoding parsing speed

	perf: improve Accept-Language parsing speed

1.3.2 / 2016-03-08

	deps: mime-types@~2.1.10

	Fix extension of application/dash+xml

	Update primary extension for audio/mp4

	deps: mime-db@~1.22.0

1.3.1 / 2016-01-19

	deps: mime-types@~2.1.9

	deps: mime-db@~1.21.0

1.3.0 / 2015-09-29

	deps: mime-types@~2.1.7

	deps: mime-db@~1.19.0

	deps: negotiator@0.6.0

	Fix including type extensions in parameters in Accept parsing

	Fix parsing Accept parameters with quoted equals

	Fix parsing Accept parameters with quoted semicolons

	Lazy-load modules from main entry point

	perf: delay type concatenation until needed

	perf: enable strict mode

	perf: hoist regular expressions

	perf: remove closures getting spec properties

	perf: remove a closure from media type parsing

	perf: remove property delete from media type parsing

1.2.13 / 2015-09-06

	deps: mime-types@~2.1.6

	deps: mime-db@~1.18.0

1.2.12 / 2015-07-30

	deps: mime-types@~2.1.4

	deps: mime-db@~1.16.0

1.2.11 / 2015-07-16

	deps: mime-types@~2.1.3

	deps: mime-db@~1.15.0

1.2.10 / 2015-07-01

	deps: mime-types@~2.1.2

	deps: mime-db@~1.14.0

1.2.9 / 2015-06-08

	deps: mime-types@~2.1.1

	perf: fix deopt during mapping

1.2.8 / 2015-06-07

	deps: mime-types@~2.1.0

	deps: mime-db@~1.13.0

	perf: avoid argument reassignment & argument slice

	perf: avoid negotiator recursive construction

	perf: enable strict mode

	perf: remove unnecessary bitwise operator

1.2.7 / 2015-05-10

	deps: negotiator@0.5.3

	Fix media type parameter matching to be case-insensitive

1.2.6 / 2015-05-07

	deps: mime-types@~2.0.11

	deps: mime-db@~1.9.1

	deps: negotiator@0.5.2

	Fix comparing media types with quoted values

	Fix splitting media types with quoted commas

1.2.5 / 2015-03-13

	deps: mime-types@~2.0.10

	deps: mime-db@~1.8.0

1.2.4 / 2015-02-14

	Support Node.js 0.6

	deps: mime-types@~2.0.9

	deps: mime-db@~1.7.0

	deps: negotiator@0.5.1

	Fix preference sorting to be stable for long acceptable lists

1.2.3 / 2015-01-31

	deps: mime-types@~2.0.8

	deps: mime-db@~1.6.0

1.2.2 / 2014-12-30

	deps: mime-types@~2.0.7

	deps: mime-db@~1.5.0

1.2.1 / 2014-12-30

	deps: mime-types@~2.0.5

	deps: mime-db@~1.3.1

1.2.0 / 2014-12-19

	deps: negotiator@0.5.0

	Fix list return order when large accepted list

	Fix missing identity encoding when q=0 exists

	Remove dynamic building of Negotiator class

1.1.4 / 2014-12-10

	deps: mime-types@~2.0.4

	deps: mime-db@~1.3.0

1.1.3 / 2014-11-09

	deps: mime-types@~2.0.3

	deps: mime-db@~1.2.0

1.1.2 / 2014-10-14

	deps: negotiator@0.4.9

	Fix error when media type has invalid parameter

1.1.1 / 2014-09-28

	deps: mime-types@~2.0.2

	deps: mime-db@~1.1.0

	deps: negotiator@0.4.8

	Fix all negotiations to be case-insensitive

	Stable sort preferences of same quality according to client order

1.1.0 / 2014-09-02

	update mime-types

1.0.7 / 2014-07-04

	Fix wrong type returned from type when match after unknown extension

1.0.6 / 2014-06-24

	deps: negotiator@0.4.7

1.0.5 / 2014-06-20

	fix crash when unknown extension given

1.0.4 / 2014-06-19

	use mime-types

1.0.3 / 2014-06-11

	deps: negotiator@0.4.6

	Order by specificity when quality is the same

1.0.2 / 2014-05-29

	Fix interpretation when header not in request

	deps: pin negotiator@0.4.5

1.0.1 / 2014-01-18

	Identity encoding isn’t always acceptable

	deps: negotiator@~0.4.0

1.0.0 / 2013-12-27

	Genesis

accepts

[image: ../../_images/accepts.svg]NPM Version [https://npmjs.org/package/accepts]
[image: ../../_images/accepts1.svg]NPM Downloads [https://npmjs.org/package/accepts]
[image: ../../_images/accepts2.svg]Node.js Version [https://nodejs.org/en/download]
[image: ../../_images/master.svg]Build Status [https://travis-ci.org/jshttp/accepts]
[image: ../../_images/master1.svg]Test Coverage [https://coveralls.io/r/jshttp/accepts?branch=master]

Higher level content negotiation based on negotiator [https://www.npmjs.com/package/negotiator].
Extracted from koa [https://www.npmjs.com/package/koa] for general use.

In addition to negotiator, it allows:

	Allows types as an array or arguments list, ie (['text/html', 'application/json'])
as well as ('text/html', 'application/json').

	Allows type shorthands such as json.

	Returns false when no types match

	Treats non-existent headers as *

Installation

This is a Node.js [https://nodejs.org/en/] module available through the
npm registry [https://www.npmjs.com/]. Installation is done using the
npm install command [https://docs.npmjs.com/getting-started/installing-npm-packages-locally]:

$ npm install accepts

API

var accepts = require('accepts')

accepts(req)

Create a new Accepts object for the given req.

.charset(charsets)

Return the first accepted charset. If nothing in charsets is accepted,
then false is returned.

.charsets()

Return the charsets that the request accepts, in the order of the client’s
preference (most preferred first).

.encoding(encodings)

Return the first accepted encoding. If nothing in encodings is accepted,
then false is returned.

.encodings()

Return the encodings that the request accepts, in the order of the client’s
preference (most preferred first).

.language(languages)

Return the first accepted language. If nothing in languages is accepted,
then false is returned.

.languages()

Return the languages that the request accepts, in the order of the client’s
preference (most preferred first).

.type(types)

Return the first accepted type (and it is returned as the same text as what
appears in the types array). If nothing in types is accepted, then false
is returned.

The types array can contain full MIME types or file extensions. Any value
that is not a full MIME types is passed to require('mime-types').lookup.

.types()

Return the types that the request accepts, in the order of the client’s
preference (most preferred first).

Examples

Simple type negotiation

This simple example shows how to use accepts to return a different typed
respond body based on what the client wants to accept. The server lists it’s
preferences in order and will get back the best match between the client and
server.

var accepts = require('accepts')
var http = require('http')

function app (req, res) {
 var accept = accepts(req)

 // the order of this list is significant; should be server preferred order
 switch (accept.type(['json', 'html'])) {
 case 'json':
 res.setHeader('Content-Type', 'application/json')
 res.write('{"hello":"world!"}')
 break
 case 'html':
 res.setHeader('Content-Type', 'text/html')
 res.write('hello, world!')
 break
 default:
 // the fallback is text/plain, so no need to specify it above
 res.setHeader('Content-Type', 'text/plain')
 res.write('hello, world!')
 break
 }

 res.end()
}

http.createServer(app).listen(3000)

You can test this out with the cURL program:

curl -I -H'Accept: text/html' http://localhost:3000/

License

MIT

Acorn

[image: ../../_images/acorn.svg]Build Status [https://travis-ci.org/ternjs/acorn]
[image: ../../_images/acorn1.svg]NPM version [https://www.npmjs.com/package/acorn]Author funding status: [image: https://marijnhaverbeke.nl/fund/status_s.png?force]maintainer happiness [https://marijnhaverbeke.nl/fund/]

A tiny, fast JavaScript parser, written completely in JavaScript.

Community

Acorn is open source software released under an
MIT license [https://github.com/ternjs/acorn/blob/master/LICENSE].

You are welcome to
report bugs [https://github.com/ternjs/acorn/issues] or create pull
requests on github [https://github.com/ternjs/acorn]. For questions
and discussion, please use the
Tern discussion forum [https://discuss.ternjs.net].

Installation

The easiest way to install acorn is with npm [https://www.npmjs.com/].

npm install acorn

Alternately, download the source.

git clone https://github.com/ternjs/acorn.git

Components

When run in a CommonJS (node.js) or AMD environment, exported values
appear in the interfaces exposed by the individual files, as usual.
When loaded in the browser (Acorn works in any JS-enabled browser more
recent than IE5) without any kind of module management, a single
global object acorn will be defined, and all the exported properties
will be added to that.

Main parser

This is implemented in dist/acorn.js, and is what you get when you
require("acorn") in node.js.

parse(input, options) is used to parse a JavaScript program.
The input parameter is a string, options can be undefined or an
object setting some of the options listed below. The return value will
be an abstract syntax tree object as specified by the
ESTree spec [https://github.com/estree/estree].

When encountering a syntax error, the parser will raise a
SyntaxError object with a meaningful message. The error object will
have a pos property that indicates the character offset at which the
error occurred, and a loc object that contains a {line, column}
object referring to that same position.

	ecmaVersion: Indicates the ECMAScript version to parse. Must be
either 3, 5, or 6. This influences support for strict mode, the set
of reserved words, and support for new syntax features. Default is 5.

	sourceType: Indicate the mode the code should be parsed in. Can be
either "script" or "module".

	onInsertedSemicolon: If given a callback, that callback will be
called whenever a missing semicolon is inserted by the parser. The
callback will be given the character offset of the point where the
semicolon is inserted as argument, and if locations is on, also a
{line, column} object representing this position.

	onTrailingComma: Like onInsertedSemicolon, but for trailing
commas.

	allowReserved: If false, using a reserved word will generate
an error. Defaults to true for ecmaVersion 3, false for higher
versions. When given the value "never", reserved words and
keywords can also not be used as property names (as in Internet
Explorer’s old parser).

	allowReturnOutsideFunction: By default, a return statement at
the top level raises an error. Set this to true to accept such
code.

	allowImportExportEverywhere: By default, import and export
declarations can only appear at a program’s top level. Setting this
option to true allows them anywhere where a statement is allowed.

	allowHashBang: When this is enabled (off by default), if the
code starts with the characters #! (as in a shellscript), the
first line will be treated as a comment.

	locations: When true, each node has a loc object attached
with start and end subobjects, each of which contains the
one-based line and zero-based column numbers in {line, column}
form. Default is false.

	onToken: If a function is passed for this option, each found
token will be passed in same format as tokens returned from
tokenizer().getToken().

If array is passed, each found token is pushed to it.

Note that you are not allowed to call the parser from the
callback—that will corrupt its internal state.

	onComment: If a function is passed for this option, whenever a
comment is encountered the function will be called with the
following parameters:

	block: true if the comment is a block comment, false if it
is a line comment.

	text: The content of the comment.

	start: Character offset of the start of the comment.

	end: Character offset of the end of the comment.

When the locations options is on, the {line, column} locations
of the comment’s start and end are passed as two additional
parameters.

If array is passed for this option, each found comment is pushed
to it as object in Esprima format:

{
 "type": "Line" | "Block",
 "value": "comment text",
 "start": Number,
 "end": Number,
 // If `locations` option is on:
 "loc": {
 "start": {line: Number, column: Number}
 "end": {line: Number, column: Number}
 },
 // If `ranges` option is on:
 "range": [Number, Number]
}

Note that you are not allowed to call the parser from the
callback—that will corrupt its internal state.

	ranges: Nodes have their start and end characters offsets
recorded in start and end properties (directly on the node,
rather than the loc object, which holds line/column data. To also
add a semi-standardized [https://bugzilla.mozilla.org/show_bug.cgi?id=745678] range property holding a
[start, end] array with the same numbers, set the ranges option
to true.

	program: It is possible to parse multiple files into a single
AST by passing the tree produced by parsing the first file as the
program option in subsequent parses. This will add the toplevel
forms of the parsed file to the “Program” (top) node of an existing
parse tree.

	sourceFile: When the locations option is true, you can pass
this option to add a source attribute in every node’s loc
object. Note that the contents of this option are not examined or
processed in any way; you are free to use whatever format you
choose.

	directSourceFile: Like sourceFile, but a sourceFile property
will be added directly to the nodes, rather than the loc object.

	preserveParens: If this option is true, parenthesized expressions
are represented by (non-standard) ParenthesizedExpression nodes
that have a single expression property containing the expression
inside parentheses.

parseExpressionAt(input, offset, options) will parse a single
expression in a string, and return its AST. It will not complain if
there is more of the string left after the expression.

getLineInfo(input, offset) can be used to get a {line, column} object for a given program string and character offset.

tokenizer(input, options) returns an object with a getToken
method that can be called repeatedly to get the next token, a {start, end, type, value} object (with added loc property when the
locations option is enabled and range property when the ranges
option is enabled). When the token’s type is tokTypes.eof, you
should stop calling the method, since it will keep returning that same
token forever.

In ES6 environment, returned result can be used as any other
protocol-compliant iterable:

for (let token of acorn.tokenizer(str)) {
 // iterate over the tokens
}

// transform code to array of tokens:
var tokens = [...acorn.tokenizer(str)];

tokTypes holds an object mapping names to the token type objects
that end up in the type properties of tokens.

Note on using with Escodegen [https://github.com/estools/escodegen]

Escodegen supports generating comments from AST, attached in
Esprima-specific format. In order to simulate same format in
Acorn, consider following example:

var comments = [], tokens = [];

var ast = acorn.parse('var x = 42; // answer', {
	// collect ranges for each node
	ranges: true,
	// collect comments in Esprima's format
	onComment: comments,
	// collect token ranges
	onToken: tokens
});

// attach comments using collected information
escodegen.attachComments(ast, comments, tokens);

// generate code
console.log(escodegen.generate(ast, {comment: true}));
// > 'var x = 42; // answer'

dist/acorn_loose.js

This file implements an error-tolerant parser. It exposes a single
function. The loose parser is accessible in node.js via require("acorn/dist/acorn_loose").

parse_dammit(input, options) takes the same arguments and
returns the same syntax tree as the parse function in acorn.js,
but never raises an error, and will do its best to parse syntactically
invalid code in as meaningful a way as it can. It’ll insert identifier
nodes with name "✖" as placeholders in places where it can’t make
sense of the input. Depends on acorn.js, because it uses the same
tokenizer.

dist/walk.js

Implements an abstract syntax tree walker. Will store its interface in
acorn.walk when loaded without a module system.

simple(node, visitors, base, state) does a ‘simple’ walk over
a tree. node should be the AST node to walk, and visitors an
object with properties whose names correspond to node types in the
ESTree spec [https://github.com/estree/estree]. The properties should contain functions
that will be called with the node object and, if applicable the state
at that point. The last two arguments are optional. base is a walker
algorithm, and state is a start state. The default walker will
simply visit all statements and expressions and not produce a
meaningful state. (An example of a use of state is to track scope at
each point in the tree.)

ancestor(node, visitors, base, state) does a ‘simple’ walk over
a tree, building up an array of ancestor nodes (including the current node)
and passing the array to callbacks in the state parameter.

recursive(node, state, functions, base) does a ‘recursive’
walk, where the walker functions are responsible for continuing the
walk on the child nodes of their target node. state is the start
state, and functions should contain an object that maps node types
to walker functions. Such functions are called with (node, state, c)
arguments, and can cause the walk to continue on a sub-node by calling
the c argument on it with (node, state) arguments. The optional
base argument provides the fallback walker functions for node types
that aren’t handled in the functions object. If not given, the
default walkers will be used.

make(functions, base) builds a new walker object by using the
walker functions in functions and filling in the missing ones by
taking defaults from base.

findNodeAt(node, start, end, test, base, state) tries to
locate a node in a tree at the given start and/or end offsets, which
satisfies the predicate test. start and end can be either null
(as wildcard) or a number. test may be a string (indicating a node
type) or a function that takes (nodeType, node) arguments and
returns a boolean indicating whether this node is interesting. base
and state are optional, and can be used to specify a custom walker.
Nodes are tested from inner to outer, so if two nodes match the
boundaries, the inner one will be preferred.

findNodeAround(node, pos, test, base, state) is a lot like
findNodeAt, but will match any node that exists ‘around’ (spanning)
the given position.

findNodeAfter(node, pos, test, base, state) is similar to
findNodeAround, but will match all nodes after the given position
(testing outer nodes before inner nodes).

Command line interface

The bin/acorn utility can be used to parse a file from the command
line. It accepts as arguments its input file and the following
options:

	--ecma3|--ecma5|--ecma6: Sets the ECMAScript version to parse. Default is
version 5.

	--module: Sets the parsing mode to "module". Is set to "script" otherwise.

	--locations: Attaches a “loc” object to each node with “start” and
“end” subobjects, each of which contains the one-based line and
zero-based column numbers in {line, column} form.

	--allow-hash-bang: If the code starts with the characters #! (as in a shellscript), the first line will be treated as a comment.

	--compact: No whitespace is used in the AST output.

	--silent: Do not output the AST, just return the exit status.

	--help: Print the usage information and quit.

The utility spits out the syntax tree as JSON data.

Build system

Acorn is written in ECMAScript 6, as a set of small modules, in the
project’s src directory, and compiled down to bigger ECMAScript 3
files in dist using Browserify [http://browserify.org] and
Babel [http://babeljs.io/]. If you are already using Babel, you can
consider including the modules directly.

The command-line test runner (npm test) uses the ES6 modules. The
browser-based test page (test/index.html) uses the compiled modules.
The bin/build-acorn.js script builds the latter from the former.

If you are working on Acorn, you’ll probably want to try the code out
directly, without an intermediate build step. In your scripts, you can
register the Babel require shim like this:

require("babel-core/register")

That will allow you to directly require the ES6 modules.

Plugins

Acorn is designed support allow plugins which, within reasonable
bounds, redefine the way the parser works. Plugins can add new token
types and new tokenizer contexts (if necessary), and extend methods in
the parser object. This is not a clean, elegant API—using it requires
an understanding of Acorn’s internals, and plugins are likely to break
whenever those internals are significantly changed. But still, it is
possible, in this way, to create parsers for JavaScript dialects
without forking all of Acorn. And in principle it is even possible to
combine such plugins, so that if you have, for example, a plugin for
parsing types and a plugin for parsing JSX-style XML literals, you
could load them both and parse code with both JSX tags and types.

A plugin should register itself by adding a property to
acorn.plugins, which holds a function. Calling acorn.parse, a
plugins option can be passed, holding an object mapping plugin names
to configuration values (or just true for plugins that don’t take
options). After the parser object has been created, the initialization
functions for the chosen plugins are called with (parser, configValue) arguments. They are expected to use the parser.extend
method to extend parser methods. For example, the readToken method
could be extended like this:

parser.extend("readToken", function(nextMethod) {
 return function(code) {
 console.log("Reading a token!")
 return nextMethod.call(this, code)
 }
})

The nextMethod argument passed to extend’s second argument is the
previous value of this method, and should usually be called through to
whenever the extended method does not handle the call itself.

Similarly, the loose parser allows plugins to register themselves via
acorn.pluginsLoose. The extension mechanism is the same as for the
normal parser:

looseParser.extend("readToken", function(nextMethod) {
 return function() {
 console.log("Reading a token in the loose parser!")
 return nextMethod.call(this)
 }
})

There is a proof-of-concept JSX plugin in the acorn-jsx [https://github.com/RReverser/acorn-jsx] project.

acorn-globals

Detect global variables in JavaScript using acorn

[image: ../../_images/master2.svg]Build Status [https://travis-ci.org/ForbesLindesay/acorn-globals]
[image: ../../_images/acorn-globals.svg]Dependency Status [https://david-dm.org/ForbesLindesay/acorn-globals]
[image: ../../_images/acorn-globals1.svg]NPM version [https://www.npmjs.org/package/acorn-globals]

Installation

npm install acorn-globals

Usage

detect.js

var fs = require('fs');
var detect = require('acorn-globals');

var src = fs.readFileSync(__dirname + '/input.js', 'utf8');

var scope = detect(src);
console.dir(scope);

input.js

var x = 5;
var y = 3, z = 2;

w.foo();
w = 2;

RAWR=444;
RAWR.foo();

BLARG=3;

foo(function () {
 var BAR = 3;
 process.nextTick(function (ZZZZZZZZZZZZ) {
 console.log('beep boop');
 var xyz = 4;
 x += 10;
 x.zzzzzz;
 ZZZ=6;
 });
 function doom () {
 }
 ZZZ.foo();

});

console.log(xyz);

output:

$ node example/detect.js
[{ name: 'BLARG', nodes: [[Object]] },
 { name: 'RAWR', nodes: [[Object], [Object]] },
 { name: 'ZZZ', nodes: [[Object], [Object]] },
 { name: 'console', nodes: [[Object], [Object]] },
 { name: 'foo', nodes: [[Object]] },
 { name: 'process', nodes: [[Object]] },
 { name: 'w', nodes: [[Object], [Object]] },
 { name: 'xyz', nodes: [[Object]] }]

License

MIT

 [image: Ajv logo]
Ajv: Another JSON Schema Validator

The fastest JSON Schema validator for Node.js and browser. Supports draft-04/06/07.

[image: ../../_images/ajv.svg]Build Status [https://travis-ci.org/ajv-validator/ajv]
[image: ../../_images/ajv1.svg]npm [https://www.npmjs.com/package/ajv]
[image: ../../_images/ajv2.svg]npm downloads [https://www.npmjs.com/package/ajv]
[image: ../../_images/badge.svg]Coverage Status [https://coveralls.io/github/ajv-validator/ajv?branch=master]
[image: ../../_images/ajv3.svg]Gitter [https://gitter.im/ajv-validator/ajv]
[image: ../../_images/%24-sponsors-brightgreen.svg]GitHub Sponsors [https://github.com/sponsors/epoberezkin]

Mozilla MOSS grant and OpenJS Foundation

 <no title>

 These files are compiled dot templates from dot folder.

Do NOT edit them directly, edit the templates and run npm run build from main ajv folder.

 align-text

align-text [image: ../../_images/align-text.svg]NPM version [http://badge.fury.io/js/align-text] [image: ../../_images/align-text1.svg]Build Status [https://travis-ci.org/jonschlinkert/align-text]

Align the text in a string.

Examples

Align text values in an array:

align([1, 2, 3, 100]);
//=> [' 1', ' 2', ' 3', '100']

Or do stuff like this:

[image: ../../_images/7db6e01f43451c2c86f4db81f6b94d6805688993.png]screen shot 2015-06-09 at 2 08 34 am

Visit the example to see how this works.

Install

Install with npm [https://www.npmjs.com/]

$ npm i align-text --save

Usage

var align = require('align-text');
align(text, callback_function_or_integer);

Params

	text can be a string or array. If a string is passed, a string will be returned. If an array is passed, an array will be returned.

	callback|integer: if an integer, the text will be indented by that amount. If a function, it must return an integer representing the amount of leading indentation to use as align loops over each line.

Example

align(text, 4);

Would align:

abc
abc
abc

To:

 abc
 abc
 abc

callback

params

The callback is used to determine the indentation of each line and gets the following params:

	len the length of the “current” line

	longest the length of the longest line

	line the current line (string) being aligned

	lines the array of all lines

return

The callback may return:

	an integer that represents the number of spaces to use for padding,

	or an object with the following properties:

	indent: {Number} the amount of indentation to use. Default is 0 when an object is returned.

	character: {String} the character to use for indentation. Default is '' (empty string) when an object is returned.

	prefix: {String} leading characters to use at the beginning of each line. '' (empty string) when an object is returned.

Integer example:

// calculate half the difference between the length
// of the current line and the longest line
function centerAlign(len, longest, line, lines) {
 return Math.floor((longest - len) / 2);
}

Object example:

function centerAlign(len, longest, line, lines) {
 return {
 character: '\t',
 indent: Math.floor((longest - len) / 2),
 prefix: '~ ',
 }
}

Usage examples

Center align

Using the centerAlign function from above:

align(text, centerAlign);

Would align this text:

Lorem ipsum dolor sit amet
consectetur adipiscin
elit, sed do eiusmod tempor incididun
ut labore et dolor
magna aliqua. Ut enim ad mini
veniam, quis

Resulting in this:

 Lorem ipsum dolor sit amet,
 consectetur adipiscing
elit, sed do eiusmod tempor incididunt
 ut labore et dolore
 magna aliqua. Ut enim ad minim
 veniam, quis

Customize

If you wanted to add more padding on the left, just pass the number in the callback.

For example, to add 4 spaces before every line:

function centerAlign(len, longest, line, lines) {
 return 4 + Math.floor((longest - len) / 2);
}

Would result in:

 Lorem ipsum dolor sit amet,
 consectetur adipiscing
 elit, sed do eiusmod tempor incididunt
 ut labore et dolore
 magna aliqua. Ut enim ad minim
 veniam, quis

Bullets

align(text, function (len, max, line, lines) {
 return {prefix: ' - '};
});

Would return:

- Lorem ipsum dolor sit amet,
- consectetur adipiscing
- elit, sed do eiusmod tempor incididunt
- ut labore et dolore
- magna aliqua. Ut enim ad minim
- veniam, quis

Different indent character

align(text, function (len, max, line, lines) {
 return {
 indent: Math.floor((max - len) / 2),
 character: '~',
 };
});

Would return

~~~~~Lorem ipsum dolor sit amet,
~~~~~~~~consectetur adipiscing
elit, sed do eiusmod tempor incididunt
~~~~~~~~~ut labore et dolore
~~~~magna aliqua. Ut enim ad minim
~~~~~~~~~~~~~veniam, quis








Related projects


	center-align [https://github.com/jonschlinkert/center-align]: Center-align the text in a string.


	justify [https://github.com/bahamas10/node-justify]: Left or right (or both) justify text using a custom width and character


	longest [https://github.com/jonschlinkert/longest]: Get the longest item in an array.


	right-align [https://github.com/jonschlinkert/right-align]: Right-align the text in a string.


	repeat-string [https://github.com/jonschlinkert/repeat-string]: Repeat the given string n times. Fastest implementation for repeating a string.


	word-wrap [https://github.com/jonschlinkert/word-wrap]: Wrap words to a specified length.






Running tests

Install dev dependencies:

$ npm i -d && npm test







Contributing

Pull requests and stars are always welcome. For bugs and feature requests, please create an issue [https://github.com/jonschlinkert/align-text/issues/new]



Author

Jon Schlinkert


	github/jonschlinkert [https://github.com/jonschlinkert]


	twitter/jonschlinkert [http://twitter.com/jonschlinkert]






License

Copyright © 2015 Jon Schlinkert [https://github.com/jonschlinkert]
Released under the MIT license.



This file was generated by verb-cli [https://github.com/assemble/verb-cli] on June 09, 2015.





          

      

      

    

  

  
    

    amdefine
    

    
 
  

    
      
          
            
  
amdefine

A module that can be used to implement AMD’s define() in Node. This allows you
to code to the AMD API and have the module work in node programs without
requiring those other programs to use AMD.


Usage

1) Update your package.json to indicate amdefine as a dependency:

    "dependencies": {
        "amdefine": ">=0.1.0"
    }





Then run npm install to get amdefine into your project.

2) At the top of each module that uses define(), place this code:

if (typeof define !== 'function') { var define = require('amdefine')(module) }





Only use these snippets when loading amdefine. If you preserve the basic structure,
with the braces, it will be stripped out when using the RequireJS optimizer.

You can add spaces, line breaks and even require amdefine with a local path, but
keep the rest of the structure to get the stripping behavior.

As you may know, because if statements in JavaScript don’t have their own scope, the var
declaration in the above snippet is made whether the if expression is truthy or not. If
RequireJS is loaded then the declaration is superfluous because define is already already
declared in the same scope in RequireJS. Fortunately JavaScript handles multiple var
declarations of the same variable in the same scope gracefully.

If you want to deliver amdefine.js with your code rather than specifying it as a dependency
with npm, then just download the latest release and refer to it using a relative path:

Latest Version [https://github.com/jrburke/amdefine/raw/latest/amdefine.js]


amdefine/intercept

Consider this very experimental.

Instead of pasting the piece of text for the amdefine setup of a define
variable in each module you create or consume, you can use amdefine/intercept
instead. It will automatically insert the above snippet in each .js file loaded
by Node.

Warning: you should only use this if you are creating an application that
is consuming AMD style defined()’d modules that are distributed via npm and want
to run that code in Node.

For library code where you are not sure if it will be used by others in Node or
in the browser, then explicitly depending on amdefine and placing the code
snippet above is suggested path, instead of using amdefine/intercept. The
intercept module affects all .js files loaded in the Node app, and it is
inconsiderate to modify global state like that unless you are also controlling
the top level app.


Why distribute AMD-style modules via npm?

npm has a lot of weaknesses for front-end use (installed layout is not great,
should have better support for the `baseUrl + moduleID + ‘.js’ style of loading,
single file JS installs), but some people want a JS package manager and are
willing to live with those constraints. If that is you, but still want to author
in AMD style modules to get dynamic require([]), better direct source usage and
powerful loader plugin support in the browser, then this tool can help.



amdefine/intercept usage

Just require it in your top level app module (for example index.js, server.js):

require('amdefine/intercept');





The module does not return a value, so no need to assign the result to a local
variable.

Then just require() code as you normally would with Node’s require(). Any .js
loaded after the intercept require will have the amdefine check injected in
the .js source as it is loaded. It does not modify the source on disk, just
prepends some content to the text of the module as it is loaded by Node.



How amdefine/intercept works

It overrides the Module._extensions['.js'] in Node to automatically prepend
the amdefine snippet above. So, it will affect any .js file loaded by your
app.





define() usage

It is best if you use the anonymous forms of define() in your module:

define(function (require) {
    var dependency = require('dependency');
});





or

define(['dependency'], function (dependency) {

});







RequireJS optimizer integration. [bookmark: optimizer]
  
    

    Array Flatten
    

    
 
  

    
      
          
            
  
Array Flatten

[image: ../../_images/array-flatten.svg]NPM version [https://npmjs.org/package/array-flatten]
[image: ../../_images/array-flatten1.svg]NPM downloads [https://npmjs.org/package/array-flatten]
[image: ../../_images/array-flatten2.svg]Build status [https://travis-ci.org/blakeembrey/array-flatten]
[image: ../../_images/array-flatten3.svg]Test coverage [https://coveralls.io/r/blakeembrey/array-flatten?branch=master]


Flatten an array of nested arrays into a single flat array. Accepts an optional depth.





Installation

npm install array-flatten --save







Usage

var flatten = require('array-flatten')

flatten([1, [2, [3, [4, [5], 6], 7], 8], 9])
//=> [1, 2, 3, 4, 5, 6, 7, 8, 9]

flatten([1, [2, [3, [4, [5], 6], 7], 8], 9], 2)
//=> [1, 2, 3, [4, [5], 6], 7, 8, 9]

(function () {
  flatten(arguments) //=> [1, 2, 3]
})(1, [2, 3])







License

MIT





          

      

      

    

  

  
    

    <no title>
    

    
 
  

    
      
          
            
  Copyright 2009–2013 Contributors. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to
deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.



          

      

      

    

  

  
    

    ASAP
    

    
 
  

    
      
          
            
  
ASAP

This asap CommonJS package contains a single asap module that
exports a single asap function that executes a function as soon as
possible.

asap(function () {
    // ...
});





More formally, ASAP provides a fast event queue that will execute tasks
until it is empty before yielding to the JavaScript engine’s underlying
event-loop.  When the event queue becomes non-empty, ASAP schedules a
flush event, preferring for that event to occur before the JavaScript
engine has an opportunity to perform IO tasks or rendering, thus making
the first task and subsequent tasks semantically indistinguishable.
ASAP uses a variety of techniques to preserve this invariant on
different versions of browsers and NodeJS.

By design, ASAP can starve the event loop on the theory that, if there
is enough work to be done synchronously, albeit in separate events, long
enough to starve input or output, it is a strong indicator that the
program needs to push back on scheduling more work.

Take care.  ASAP can sustain infinite recursive calls indefinitely
without warning.  This is behaviorally equivalent to an infinite loop.
It will not halt from a stack overflow, but it will chew through
memory (which is an oddity I cannot explain at this time).  Just as with
infinite loops, you can monitor a Node process for this behavior with a
heart-beat signal.  As with infinite loops, a very small amount of
caution goes a long way to avoiding problems.

function loop() {
    asap(loop);
}
loop();





ASAP is distinct from setImmediate in that it does not suffer the
overhead of returning a handle and being possible to cancel.  For a
setImmediate shim, consider setImmediate [https://github.com/noblejs/setimmediate].

If a task throws an exception, it will not interrupt the flushing of
high-priority tasks.  The exception will be postponed to a later,
low-priority event to avoid slow-downs, when the underlying JavaScript
engine will treat it as it does any unhandled exception.


Heritage

ASAP has been factored out of the Q [https://github.com/kriskowal/q] asynchronous promise library.
It originally had a naïve implementation in terms of setTimeout, but
Malte Ubl [http://www.nonblocking.io/2011/06/windownexttick.html] provided an insight that postMessage might be
useful for creating a high-priority, no-delay event dispatch hack.
Since then, Internet Explorer proposed and implemented setImmediate.
Robert Kratić began contributing to Q by measuring the performance of
the internal implementation of asap, paying particular attention to
error recovery.  Domenic, Robert, and I collectively settled on the
current strategy of unrolling the high-priority event queue internally
regardless of what strategy we used to dispatch the potentially
lower-priority flush event.  Domenic went on to make ASAP cooperate with
NodeJS domains.

For further reading, Nicholas Zakas provided a thorough article on The
Case for setImmediate [http://www.nczonline.net/blog/2013/07/09/the-case-for-setimmediate/].



License

Copyright 2009-2013 by Contributors
MIT License (enclosed)





          

      

      

    

  

  
    

    Usage
    

    
 
  

    
      
          
            
  node-asn1 is a library for encoding and decoding ASN.1 datatypes in pure JS.
Currently BER encoding is supported; at some point I’ll likely have to do DER.


Usage

Mostly, if you’re actually needing to read and write ASN.1, you probably don’t
need this readme to explain what and why.  If you have no idea what ASN.1 is,
see this: ftp://ftp.rsa.com/pub/pkcs/ascii/layman.asc

The source is pretty much self-explanatory, and has read/write methods for the
common types out there.


Decoding

The following reads an ASN.1 sequence with a boolean.

var Ber = require('asn1').Ber;

var reader = new Ber.Reader(Buffer.from([0x30, 0x03, 0x01, 0x01, 0xff]));

reader.readSequence();
console.log('Sequence len: ' + reader.length);
if (reader.peek() === Ber.Boolean)
  console.log(reader.readBoolean());







Encoding

The following generates the same payload as above.

var Ber = require('asn1').Ber;

var writer = new Ber.Writer();

writer.startSequence();
writer.writeBoolean(true);
writer.endSequence();

console.log(writer.buffer);








Installation

npm install asn1







License

MIT.



Bugs

See https://github.com/joyent/node-asn1/issues.




          

      

      

    

  

  
    

    assert-plus Changelog
    

    
 
  

    
      
          
            
  
assert-plus Changelog


1.0.0


	BREAKING assert.number (and derivatives) now accept Infinity as valid input


	Add assert.finite check.  Previous assert.number callers should use this if
they expect Infinity inputs to throw.






0.2.0


	Fix assert.object(null) so it throws


	Fix optional/arrayOf exports for non-type-of asserts


	Add optiona/arrayOf exports for Stream/Date/Regex/uuid


	Add basic unit test coverage








          

      

      

    

  

  
    

    assert-plus
    

    
 
  

    
      
          
            
  
assert-plus

This library is a super small wrapper over node’s assert module that has two
things: (1) the ability to disable assertions with the environment variable
NODE_NDEBUG, and (2) some API wrappers for argument testing.  Like
assert.string(myArg, 'myArg').  As a simple example, most of my code looks
like this:

    var assert = require('assert-plus');

    function fooAccount(options, callback) {
        assert.object(options, 'options');
        assert.number(options.id, 'options.id');
        assert.bool(options.isManager, 'options.isManager');
        assert.string(options.name, 'options.name');
        assert.arrayOfString(options.email, 'options.email');
        assert.func(callback, 'callback');

        // Do stuff
        callback(null, {});
    }







API

All methods that aren’t part of node’s core assert API are simply assumed to
take an argument, and then a string ‘name’ that’s not a message; AssertionError
will be thrown if the assertion fails with a message like:

AssertionError: foo (string) is required
at test (/home/mark/work/foo/foo.js:3:9)
at Object.<anonymous> (/home/mark/work/foo/foo.js:15:1)
at Module._compile (module.js:446:26)
at Object..js (module.js:464:10)
at Module.load (module.js:353:31)
at Function._load (module.js:311:12)
at Array.0 (module.js:484:10)
at EventEmitter._tickCallback (node.js:190:38)





from:

    function test(foo) {
        assert.string(foo, 'foo');
    }





There you go.  You can check that arrays are of a homogeneous type with Arrayof$Type:

    function test(foo) {
        assert.arrayOfString(foo, 'foo');
    }





You can assert IFF an argument is not undefined (i.e., an optional arg):

    assert.optionalString(foo, 'foo');





Lastly, you can opt-out of assertion checking altogether by setting the
environment variable NODE_NDEBUG=1.  This is pseudo-useful if you have
lots of assertions, and don’t want to pay typeof () taxes to v8 in
production.  Be advised:  The standard functions re-exported from assert are
also disabled in assert-plus if NDEBUG is specified.  Using them directly from
the assert module avoids this behavior.

The complete list of APIs is:


	assert.array


	assert.bool


	assert.buffer


	assert.func


	assert.number


	assert.finite


	assert.object


	assert.string


	assert.stream


	assert.date


	assert.regexp


	assert.uuid


	assert.arrayOfArray


	assert.arrayOfBool


	assert.arrayOfBuffer


	assert.arrayOfFunc


	assert.arrayOfNumber


	assert.arrayOfFinite


	assert.arrayOfObject


	assert.arrayOfString


	assert.arrayOfStream


	assert.arrayOfDate


	assert.arrayOfRegexp


	assert.arrayOfUuid


	assert.optionalArray


	assert.optionalBool


	assert.optionalBuffer


	assert.optionalFunc


	assert.optionalNumber


	assert.optionalFinite


	assert.optionalObject


	assert.optionalString


	assert.optionalStream


	assert.optionalDate


	assert.optionalRegexp


	assert.optionalUuid


	assert.optionalArrayOfArray


	assert.optionalArrayOfBool


	assert.optionalArrayOfBuffer


	assert.optionalArrayOfFunc


	assert.optionalArrayOfNumber


	assert.optionalArrayOfFinite


	assert.optionalArrayOfObject


	assert.optionalArrayOfString


	assert.optionalArrayOfStream


	assert.optionalArrayOfDate


	assert.optionalArrayOfRegexp


	assert.optionalArrayOfUuid


	assert.AssertionError


	assert.fail


	assert.ok


	assert.equal


	assert.notEqual


	assert.deepEqual


	assert.notDeepEqual


	assert.strictEqual


	assert.notStrictEqual


	assert.throws


	assert.doesNotThrow


	assert.ifError






Installation

npm install assert-plus






License

The MIT License (MIT)
Copyright (c) 2012 Mark Cavage

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.



Bugs

See https://github.com/mcavage/node-assert-plus/issues.





          

      

      

    

  

  
    

    asynckit
    

    
 
  

    
      
          
            
  
asynckit [image: ../../_images/asynckit.svg]NPM Module [https://www.npmjs.com/package/asynckit]

Minimal async jobs utility library, with streams support.

[image: ../../_images/v0.4.0.svg]PhantomJS Build [https://travis-ci.org/alexindigo/asynckit]
[image: ../../_images/v0.4.01.svg]Linux Build [https://travis-ci.org/alexindigo/asynckit]
[image: ../../_images/v0.4.02.svg]Windows Build [https://ci.appveyor.com/project/alexindigo/asynckit]

[image: ../../_images/v0.4.03.svg]Coverage Status [https://coveralls.io/github/alexindigo/asynckit?branch=master]
[image: ../../_images/v0.4.04.svg]Dependency Status [https://david-dm.org/alexindigo/asynckit]
[image: https://www.bithound.io/github/alexindigo/asynckit/badges/score.svg]bitHound Overall Score [https://www.bithound.io/github/alexindigo/asynckit]

AsyncKit provides harness for parallel and serial iterators over list of items represented by arrays or objects.
Optionally it accepts abort function (should be synchronously return by iterator for each item), and terminates left over jobs upon an error event. For specific iteration order built-in (ascending and descending) and custom sort helpers also supported, via asynckit.serialOrdered method.

It ensures async operations to keep behavior more stable and prevent Maximum call stack size exceeded errors, from sync iterators.

| compression        |     size |
| :—————– | ——-: |
| asynckit.js        | 12.34 kB |
| asynckit.min.js    |  4.11 kB |
| asynckit.min.js.gz |  1.47 kB |


Install

$ npm install --save asynckit







Examples


Parallel Jobs

Runs iterator over provided array in parallel. Stores output in the result array,
on the matching positions. In unlikely event of an error from one of the jobs,
will terminate rest of the active jobs (if abort function is provided)
and return error along with salvaged data to the main callback function.


Input Array

var parallel = require('asynckit').parallel
  , assert   = require('assert')
  ;

var source         = [ 1, 1, 4, 16, 64, 32, 8, 2 ]
  , expectedResult = [ 2, 2, 8, 32, 128, 64, 16, 4 ]
  , expectedTarget = [ 1, 1, 2, 4, 8, 16, 32, 64 ]
  , target         = []
  ;

parallel(source, asyncJob, function(err, result)
{
  assert.deepEqual(result, expectedResult);
  assert.deepEqual(target, expectedTarget);
});

// async job accepts one element from the array
// and a callback function
function asyncJob(item, cb)
{
  // different delays (in ms) per item
  var delay = item * 25;

  // pretend different jobs take different time to finish
  // and not in consequential order
  var timeoutId = setTimeout(function() {
    target.push(item);
    cb(null, item * 2);
  }, delay);

  // allow to cancel "leftover" jobs upon error
  // return function, invoking of which will abort this job
  return clearTimeout.bind(null, timeoutId);
}





More examples could be found in test/test-parallel-array.js.



Input Object

Also it supports named jobs, listed via object.

var parallel = require('asynckit/parallel')
  , assert   = require('assert')
  ;

var source         = { first: 1, one: 1, four: 4, sixteen: 16, sixtyFour: 64, thirtyTwo: 32, eight: 8, two: 2 }
  , expectedResult = { first: 2, one: 2, four: 8, sixteen: 32, sixtyFour: 128, thirtyTwo: 64, eight: 16, two: 4 }
  , expectedTarget = [ 1, 1, 2, 4, 8, 16, 32, 64 ]
  , expectedKeys   = [ 'first', 'one', 'two', 'four', 'eight', 'sixteen', 'thirtyTwo', 'sixtyFour' ]
  , target         = []
  , keys           = []
  ;

parallel(source, asyncJob, function(err, result)
{
  assert.deepEqual(result, expectedResult);
  assert.deepEqual(target, expectedTarget);
  assert.deepEqual(keys, expectedKeys);
});

// supports full value, key, callback (shortcut) interface
function asyncJob(item, key, cb)
{
  // different delays (in ms) per item
  var delay = item * 25;

  // pretend different jobs take different time to finish
  // and not in consequential order
  var timeoutId = setTimeout(function() {
    keys.push(key);
    target.push(item);
    cb(null, item * 2);
  }, delay);

  // allow to cancel "leftover" jobs upon error
  // return function, invoking of which will abort this job
  return clearTimeout.bind(null, timeoutId);
}





More examples could be found in test/test-parallel-object.js.




Serial Jobs

Runs iterator over provided array sequentially. Stores output in the result array,
on the matching positions. In unlikely event of an error from one of the jobs,
will not proceed to the rest of the items in the list
and return error along with salvaged data to the main callback function.


Input Array

var serial = require('asynckit/serial')
  , assert = require('assert')
  ;

var source         = [ 1, 1, 4, 16, 64, 32, 8, 2 ]
  , expectedResult = [ 2, 2, 8, 32, 128, 64, 16, 4 ]
  , expectedTarget = [ 0, 1, 2, 3, 4, 5, 6, 7 ]
  , target         = []
  ;

serial(source, asyncJob, function(err, result)
{
  assert.deepEqual(result, expectedResult);
  assert.deepEqual(target, expectedTarget);
});

// extended interface (item, key, callback)
// also supported for arrays
function asyncJob(item, key, cb)
{
  target.push(key);

  // it will be automatically made async
  // even it iterator "returns" in the same event loop
  cb(null, item * 2);
}





More examples could be found in test/test-serial-array.js.



Input Object

Also it supports named jobs, listed via object.

var serial = require('asynckit').serial
  , assert = require('assert')
  ;

var source         = [ 1, 1, 4, 16, 64, 32, 8, 2 ]
  , expectedResult = [ 2, 2, 8, 32, 128, 64, 16, 4 ]
  , expectedTarget = [ 0, 1, 2, 3, 4, 5, 6, 7 ]
  , target         = []
  ;

var source         = { first: 1, one: 1, four: 4, sixteen: 16, sixtyFour: 64, thirtyTwo: 32, eight: 8, two: 2 }
  , expectedResult = { first: 2, one: 2, four: 8, sixteen: 32, sixtyFour: 128, thirtyTwo: 64, eight: 16, two: 4 }
  , expectedTarget = [ 1, 1, 4, 16, 64, 32, 8, 2 ]
  , target         = []
  ;


serial(source, asyncJob, function(err, result)
{
  assert.deepEqual(result, expectedResult);
  assert.deepEqual(target, expectedTarget);
});

// shortcut interface (item, callback)
// works for object as well as for the arrays
function asyncJob(item, cb)
{
  target.push(item);

  // it will be automatically made async
  // even it iterator "returns" in the same event loop
  cb(null, item * 2);
}





More examples could be found in test/test-serial-object.js.

Note: Since object is an unordered collection of properties,
it may produce unexpected results with sequential iterations.
Whenever order of the jobs’ execution is important please use serialOrdered method.




Ordered Serial Iterations

TBD

For example compare-property package.



Streaming interface

TBD




Want to Know More?

More examples can be found in test folder.

Or open an issue [https://github.com/alexindigo/asynckit/issues] with questions and/or suggestions.



License

AsyncKit is licensed under the MIT license.





          

      

      

    

  

  
    

    aws-sign
    

    
 
  

    
      
          
            
  
aws-sign

AWS signing. Originally pulled from LearnBoost/knox, maintained as vendor in request, now a standalone module.




          

      

      

    

  

  
    

    aws4
    

    
 
  

    
      
          
            
  
aws4

[image: ../../_images/aws4.png]Build Status [https://travis-ci.org/github/mhart/aws4]

A small utility to sign vanilla Node.js http(s) request options using Amazon’s
AWS Signature Version 4 [https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html].

If you want to sign and send AWS requests in a modern browser, or an environment like Cloudflare Workers [https://developers.cloudflare.com/workers/], then check out aws4fetch [https://github.com/mhart/aws4fetch] – otherwise you can also bundle this library for use in older browsers.

The only AWS service that doesn’t support v4 as of 2020-05-22 is
SimpleDB [https://docs.aws.amazon.com/AmazonSimpleDB/latest/DeveloperGuide/SDB_API.html]
(it only supports AWS Signature Version 2 [https://github.com/mhart/aws2]).

It also provides defaults for a number of core AWS headers and
request parameters, making it very easy to query AWS services, or
build out a fully-featured AWS library.



Example

var https = require('https')
var aws4  = require('aws4')

// to illustrate usage, we'll create a utility function to request and pipe to stdout
function request(opts) { https.request(opts, function(res) { res.pipe(process.stdout) }).end(opts.body || '') }

// aws4 will sign an options object as you'd pass to http.request, with an AWS service and region
var opts = { host: 'my-bucket.s3.us-west-1.amazonaws.com', path: '/my-object', service: 's3', region: 'us-west-1' }

// aws4.sign() will sign and modify these options, ready to pass to http.request
aws4.sign(opts, { accessKeyId: '', secretAccessKey: '' })

// or it can get credentials from process.env.AWS_ACCESS_KEY_ID, etc
aws4.sign(opts)

// for most AWS services, aws4 can figure out the service and region if you pass a host
opts = { host: 'my-bucket.s3.us-west-1.amazonaws.com', path: '/my-object' }

// usually it will add/modify request headers, but you can also sign the query:
opts = { host: 'my-bucket.s3.amazonaws.com', path: '/?X-Amz-Expires=12345', signQuery: true }

// and for services with simple hosts, aws4 can infer the host from service and region:
opts = { service: 'sqs', region: 'us-east-1', path: '/?Action=ListQueues' }

// and if you're using us-east-1, it's the default:
opts = { service: 'sqs', path: '/?Action=ListQueues' }

aws4.sign(opts)
console.log(opts)
/*
{
  host: 'sqs.us-east-1.amazonaws.com',
  path: '/?Action=ListQueues',
  headers: {
    Host: 'sqs.us-east-1.amazonaws.com',
    'X-Amz-Date': '20121226T061030Z',
    Authorization: 'AWS4-HMAC-SHA256 Credential=ABCDEF/20121226/us-east-1/sqs/aws4_request, ...'
  }
}
*/

// we can now use this to query AWS
request(opts)
/*
<?xml version="1.0"?>
<ListQueuesResponse xmlns="https://queue.amazonaws.com/doc/2012-11-05/">
...
*/

// aws4 can infer the HTTP method if a body is passed in
// method will be POST and Content-Type: 'application/x-www-form-urlencoded; charset=utf-8'
request(aws4.sign({ service: 'iam', body: 'Action=ListGroups&Version=2010-05-08' }))
/*
<ListGroupsResponse xmlns="https://iam.amazonaws.com/doc/2010-05-08/">
...
*/

// you can specify any custom option or header as per usual
request(aws4.sign({
  service: 'dynamodb',
  region: 'ap-southeast-2',
  method: 'POST',
  path: '/',
  headers: {
    'Content-Type': 'application/x-amz-json-1.0',
    'X-Amz-Target': 'DynamoDB_20120810.ListTables'
  },
  body: '{}'
}))
/*
{"TableNames":[]}
...
*/

// The raw RequestSigner can be used to generate CodeCommit Git passwords
var signer = new aws4.RequestSigner({
  service: 'codecommit',
  host: 'git-codecommit.us-east-1.amazonaws.com',
  method: 'GIT',
  path: '/v1/repos/MyAwesomeRepo',
})
var password = signer.getDateTime() + 'Z' + signer.signature()

// see example.js for examples with other services







API


aws4.sign(requestOptions, [credentials])

Calculates and populates any necessary AWS headers and/or request
options on requestOptions. Returns requestOptions as a convenience for chaining.

requestOptions is an object holding the same options that the Node.js
http.request [https://nodejs.org/docs/latest/api/http.html#http_http_request_options_callback]
function takes.

The following properties of requestOptions are used in the signing or
populated if they don’t already exist:


	hostname or host (will try to be determined from service and region if not given)


	method (will use 'GET' if not given or 'POST' if there is a body)


	path (will use '/' if not given)


	body (will use '' if not given)


	service (will try to be calculated from hostname or host if not given)


	region (will try to be calculated from hostname or host or use 'us-east-1' if not given)


	signQuery (to sign the query instead of adding an Authorization header, defaults to false)


	headers['Host'] (will use hostname or host or be calculated if not given)


	headers['Content-Type'] (will use 'application/x-www-form-urlencoded; charset=utf-8'
if not given and there is a body)


	headers['Date'] (used to calculate the signature date if given, otherwise new Date is used)




Your AWS credentials (which can be found in your
AWS console [https://portal.aws.amazon.com/gp/aws/securityCredentials])
can be specified in one of two ways:


	As the second argument, like this:




aws4.sign(requestOptions, {
  secretAccessKey: "<your-secret-access-key>",
  accessKeyId: "<your-access-key-id>",
  sessionToken: "<your-session-token>"
})






	From process.env, such as this:




export AWS_ACCESS_KEY_ID="<your-access-key-id>"
export AWS_SECRET_ACCESS_KEY="<your-secret-access-key>"
export AWS_SESSION_TOKEN="<your-session-token>"





(will also use AWS_ACCESS_KEY and AWS_SECRET_KEY if available)

The sessionToken property and AWS_SESSION_TOKEN environment variable are optional for signing
with IAM STS temporary credentials [https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html].




Installation

With npm [https://www.npmjs.com/] do:

npm install aws4





Can also be used in the browser.



Thanks

Thanks to @jed [https://github.com/jed] for his
dynamo-client [https://github.com/jed/dynamo-client] lib where I first
committed and subsequently extracted this code.

Also thanks to the
official Node.js AWS SDK [https://github.com/aws/aws-sdk-js] for giving
me a start on implementing the v4 signature.




          

      

      

    

  

  
    

    <no title>
    

    
 
  

    
      
          
            
  (MIT)

Copyright (c) 2013 Julian Gruber <julian@juliangruber.com>

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.



          

      

      

    

  

  
    

    balanced-match
    

    
 
  

    
      
          
            
  
balanced-match

Match balanced string pairs, like { and } or <b> and </b>. Supports regular expressions as well!

[image: ../../_images/balanced-match.svg]build status [http://travis-ci.org/juliangruber/balanced-match]
[image: ../../_images/balanced-match1.svg]downloads [https://www.npmjs.org/package/balanced-match]

[image: https://ci.testling.com/juliangruber/balanced-match.png]testling badge [https://ci.testling.com/juliangruber/balanced-match]


Example

Get the first matching pair of braces:

var balanced = require('balanced-match');

console.log(balanced('{', '}', 'pre{in{nested}}post'));
console.log(balanced('{', '}', 'pre{first}between{second}post'));
console.log(balanced(/\s+\{\s+/, /\s+\}\s+/, 'pre  {   in{nest}   }  post'));





The matches are:

$ node example.js
{ start: 3, end: 14, pre: 'pre', body: 'in{nested}', post: 'post' }
{ start: 3,
  end: 9,
  pre: 'pre',
  body: 'first',
  post: 'between{second}post' }
{ start: 3, end: 17, pre: 'pre', body: 'in{nest}', post: 'post' }







API


var m = balanced(a, b, str)

For the first non-nested matching pair of a and b in str, return an
object with those keys:


	start the index of the first match of a


	end the index of the matching b


	pre the preamble, a and b not included


	body the match, a and b not included


	post the postscript, a and b not included




If there’s no match, undefined will be returned.

If the str contains more a than b / there are unmatched pairs, the first match that was closed will be used. For example, {{a} will match ['{', 'a', ''] and {a}} will match ['', 'a', '}'].



var r = balanced.range(a, b, str)

For the first non-nested matching pair of a and b in str, return an
array with indexes: [ <a index>, <b index> ].

If there’s no match, undefined will be returned.

If the str contains more a than b / there are unmatched pairs, the first match that was closed will be used. For example, {{a} will match [ 1, 3 ] and {a}} will match [0, 2].




Installation

With npm [https://npmjs.org] do:

npm install balanced-match







License

(MIT)

Copyright (c) 2013 Julian Gruber <julian@juliangruber.com>

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.





          

      

      

    

  

  
    

    2.0.1 / 2018-09-19
    

    
 
  

    
      
          
            
  
2.0.1 / 2018-09-19


	deps: safe-buffer@5.1.2






2.0.0 / 2017-09-12


	Drop support for Node.js below 0.8


	Remove auth(ctx) signature – pass in header or auth(ctx.req)


	Use safe-buffer for improved Buffer API






1.1.0 / 2016-11-18


	Add auth.parse for low-level string parsing






1.0.4 / 2016-05-10


	Improve error message when req argument is not an object


	Improve error message when req missing headers property






1.0.3 / 2015-07-01


	Fix regression accepting a Koa context






1.0.2 / 2015-06-12


	Improve error message when req argument missing


	perf: enable strict mode


	perf: hoist regular expression


	perf: parse with regular expressions


	perf: remove argument reassignment






1.0.1 / 2015-05-04


	Update readme






1.0.0 / 2014-07-01


	Support empty password


	Support empty username






0.0.1 / 2013-11-30


	Initial release







          

      

      

    

  

  
    

    basic-auth
    

    
 
  

    
      
          
            
  
basic-auth

[image: ../../_images/basic-auth.svg]NPM Version [https://npmjs.org/package/basic-auth]
[image: ../../_images/basic-auth1.svg]NPM Downloads [https://npmjs.org/package/basic-auth]
[image: ../../_images/basic-auth2.svg]Node.js Version [https://nodejs.org/en/download]
[image: ../../_images/master3.svg]Build Status [https://travis-ci.org/jshttp/basic-auth]
[image: ../../_images/master4.svg]Test Coverage [https://coveralls.io/r/jshttp/basic-auth?branch=master]

Generic basic auth Authorization header field parser for whatever.


Installation

This is a Node.js [https://nodejs.org/en/] module available through the
npm registry [https://www.npmjs.com/]. Installation is done using the
npm install command [https://docs.npmjs.com/getting-started/installing-npm-packages-locally]:

$ npm install basic-auth







API

var auth = require('basic-auth')






auth(req)

Get the basic auth credentials from the given request. The Authorization
header is parsed and if the header is invalid, undefined is returned,
otherwise an object with name and pass properties.



auth.parse(string)

Parse a basic auth authorization header string. This will return an object
with name and pass properties, or undefined if the string is invalid.




Example

Pass a Node.js request object to the module export. If parsing fails
undefined is returned, otherwise an object with .name and .pass.

var auth = require('basic-auth')
var user = auth(req)
// => { name: 'something', pass: 'whatever' }





A header string from any other location can also be parsed with
auth.parse, for example a Proxy-Authorization header:

var auth = require('basic-auth')
var user = auth.parse(req.getHeader('Proxy-Authorization'))






With vanilla node.js http server

var http = require('http')
var auth = require('basic-auth')
var compare = require('tsscmp')

// Create server
var server = http.createServer(function (req, res) {
  var credentials = auth(req)

  // Check credentials
  // The "check" function will typically be against your user store
  if (!credentials || !check(credentials.name, credentials.pass)) {
    res.statusCode = 401
    res.setHeader('WWW-Authenticate', 'Basic realm="example"')
    res.end('Access denied')
  } else {
    res.end('Access granted')
  }
})

// Basic function to validate credentials for example
function check (name, pass) {
  var valid = true

  // Simple method to prevent short-circut and use timing-safe compare
  valid = compare(name, 'john') && valid
  valid = compare(pass, 'secret') && valid

  return valid
}

// Listen
server.listen(3000)









License

MIT




          

      

      

    

  

  
    

    Contributing
    

    
 
  

    
      
          
            
  
Contributing

This repository uses cr.joyent.us [https://cr.joyent.us] (Gerrit) for new
changes. Anyone can submit changes. To get started, see the cr.joyent.us user
guide [https://github.com/joyent/joyent-gerrit/blob/master/docs/user/README].
This repo does not use GitHub pull requests.

See the Joyent Engineering
Guidelines [https://github.com/joyent/eng/blob/master/docs/index] for general
best practices expected in this repository.

If you’re changing something non-trivial or user-facing, you may want to submit
an issue first.




          

      

      

    

  

  
    

    API
    

    
 
  

    
      
          
            
  Port of the OpenBSD bcrypt_pbkdf function to pure Javascript. npm-ified
version of Devi Mandiri’s port [https://github.com/devi/tmp/blob/master/js/bcrypt_pbkdf.js],
with some minor performance improvements. The code is copied verbatim (and
un-styled) from Devi’s work.

This product includes software developed by Niels Provos.


API


bcrypt_pbkdf.pbkdf(pass, passlen, salt, saltlen, key, keylen, rounds)

Derive a cryptographic key of arbitrary length from a given password and salt,
using the OpenBSD bcrypt_pbkdf function. This is a combination of Blowfish and
SHA-512.

See this article [http://www.tedunangst.com/flak/post/bcrypt-pbkdf] for
further information.

Parameters:


	pass, a Uint8Array of length passlen


	passlen, an integer Number


	salt, a Uint8Array of length saltlen


	saltlen, an integer Number


	key, a Uint8Array of length keylen, will be filled with output


	keylen, an integer Number


	rounds, an integer Number, number of rounds of the PBKDF to run






bcrypt_pbkdf.hash(sha2pass, sha2salt, out)

Calculate a Blowfish hash, given SHA2-512 output of a password and salt. Used as
part of the inner round function in the PBKDF.

Parameters:


	sha2pass, a Uint8Array of length 64


	sha2salt, a Uint8Array of length 64


	out, a Uint8Array of length 32, will be filled with output







License

This source form is a 1:1 port from the OpenBSD blowfish.c and bcrypt_pbkdf.c.
As a result, it retains the original copyright and license. The two files are
under slightly different (but compatible) licenses, and are here combined in
one file. For each of the full license texts see LICENSE.




          

      

      

    

  

  
    

    1.19.0 / 2019-04-25
    

    
 
  

    
      
          
            
  
1.19.0 / 2019-04-25


	deps: bytes@3.1.0


	Add petabyte (pb) support






	deps: http-errors@1.7.2


	Set constructor name when possible


	deps: setprototypeof@1.1.1


	deps: statuses@’>= 1.5.0 < 2’






	deps: iconv-lite@0.4.24


	Added encoding MIK






	deps: qs@6.7.0


	Fix parsing array brackets after index






	deps: raw-body@2.4.0


	deps: bytes@3.1.0


	deps: http-errors@1.7.2


	deps: iconv-lite@0.4.24






	deps: type-is@~1.6.17


	deps: mime-types@~2.1.24


	perf: prevent internal throw on invalid type










1.18.3 / 2018-05-14


	Fix stack trace for strict json parse error


	deps: depd@~1.1.2


	perf: remove argument reassignment






	deps: http-errors@~1.6.3


	deps: depd@~1.1.2


	deps: setprototypeof@1.1.0


	deps: statuses@’>= 1.3.1 < 2’






	deps: iconv-lite@0.4.23


	Fix loading encoding with year appended


	Fix deprecation warnings on Node.js 10+






	deps: qs@6.5.2


	deps: raw-body@2.3.3


	deps: http-errors@1.6.3


	deps: iconv-lite@0.4.23






	deps: type-is@~1.6.16


	deps: mime-types@~2.1.18










1.18.2 / 2017-09-22


	deps: debug@2.6.9


	perf: remove argument reassignment






1.18.1 / 2017-09-12


	deps: content-type@~1.0.4


	perf: remove argument reassignment


	perf: skip parameter parsing when no parameters






	deps: iconv-lite@0.4.19


	Fix ISO-8859-1 regression


	Update Windows-1255






	deps: qs@6.5.1


	Fix parsing & compacting very deep objects






	deps: raw-body@2.3.2


	deps: iconv-lite@0.4.19










1.18.0 / 2017-09-08


	Fix JSON strict violation error to match native parse error


	Include the body property on verify errors


	Include the type property on all generated errors


	Use http-errors to set status code on errors


	deps: bytes@3.0.0


	deps: debug@2.6.8


	deps: depd@~1.1.1


	Remove unnecessary Buffer loading






	deps: http-errors@~1.6.2


	deps: depd@1.1.1






	deps: iconv-lite@0.4.18


	Add support for React Native


	Add a warning if not loaded as utf-8


	Fix CESU-8 decoding in Node.js 8


	Improve speed of ISO-8859-1 encoding






	deps: qs@6.5.0


	deps: raw-body@2.3.1


	Use http-errors for standard emitted errors


	deps: bytes@3.0.0


	deps: iconv-lite@0.4.18


	perf: skip buffer decoding on overage chunk






	perf: prevent internal throw when missing charset






1.17.2 / 2017-05-17


	deps: debug@2.6.7


	Fix DEBUG_MAX_ARRAY_LENGTH


	deps: ms@2.0.0






	deps: type-is@~1.6.15


	deps: mime-types@~2.1.15










1.17.1 / 2017-03-06


	deps: qs@6.4.0


	Fix regression parsing keys starting with [










1.17.0 / 2017-03-01


	deps: http-errors@~1.6.1


	Make message property enumerable for HttpErrors


	deps: setprototypeof@1.0.3






	deps: qs@6.3.1


	Fix compacting nested arrays










1.16.1 / 2017-02-10


	deps: debug@2.6.1


	Fix deprecation messages in WebStorm and other editors


	Undeprecate DEBUG_FD set to 1 or 2










1.16.0 / 2017-01-17


	deps: debug@2.6.0


	Allow colors in workers


	Deprecated DEBUG_FD environment variable


	Fix error when running under React Native


	Use same color for same namespace


	deps: ms@0.7.2






	deps: http-errors@~1.5.1


	deps: inherits@2.0.3


	deps: setprototypeof@1.0.2


	deps: statuses@’>= 1.3.1 < 2’






	deps: iconv-lite@0.4.15


	Added encoding MS-31J


	Added encoding MS-932


	Added encoding MS-936


	Added encoding MS-949


	Added encoding MS-950


	Fix GBK/GB18030 handling of Euro character






	deps: qs@6.2.1


	Fix array parsing from skipping empty values






	deps: raw-body@~2.2.0


	deps: iconv-lite@0.4.15






	deps: type-is@~1.6.14


	deps: mime-types@~2.1.13










1.15.2 / 2016-06-19


	deps: bytes@2.4.0


	deps: content-type@~1.0.2


	perf: enable strict mode






	deps: http-errors@~1.5.0


	Use setprototypeof module to replace __proto__ setting


	deps: statuses@’>= 1.3.0 < 2’


	perf: enable strict mode






	deps: qs@6.2.0


	deps: raw-body@~2.1.7


	deps: bytes@2.4.0


	perf: remove double-cleanup on happy path






	deps: type-is@~1.6.13


	deps: mime-types@~2.1.11










1.15.1 / 2016-05-05


	deps: bytes@2.3.0


	Drop partial bytes on all parsed units


	Fix parsing byte string that looks like hex






	deps: raw-body@~2.1.6


	deps: bytes@2.3.0






	deps: type-is@~1.6.12


	deps: mime-types@~2.1.10










1.15.0 / 2016-02-10


	deps: http-errors@~1.4.0


	Add HttpError export, for err instanceof createError.HttpError


	deps: inherits@2.0.1


	deps: statuses@’>= 1.2.1 < 2’






	deps: qs@6.1.0


	deps: type-is@~1.6.11


	deps: mime-types@~2.1.9










1.14.2 / 2015-12-16


	deps: bytes@2.2.0


	deps: iconv-lite@0.4.13


	deps: qs@5.2.0


	deps: raw-body@~2.1.5


	deps: bytes@2.2.0


	deps: iconv-lite@0.4.13






	deps: type-is@~1.6.10


	deps: mime-types@~2.1.8










1.14.1 / 2015-09-27


	Fix issue where invalid charset results in 400 when verify used


	deps: iconv-lite@0.4.12


	Fix CESU-8 decoding in Node.js 4.x






	deps: raw-body@~2.1.4


	Fix masking critical errors from iconv-lite


	deps: iconv-lite@0.4.12






	deps: type-is@~1.6.9


	deps: mime-types@~2.1.7










1.14.0 / 2015-09-16


	Fix JSON strict parse error to match syntax errors


	Provide static require analysis in urlencoded parser


	deps: depd@~1.1.0


	Support web browser loading






	deps: qs@5.1.0


	deps: raw-body@~2.1.3


	Fix sync callback when attaching data listener causes sync read






	deps: type-is@~1.6.8


	Fix type error when given invalid type to match against


	deps: mime-types@~2.1.6










1.13.3 / 2015-07-31


	deps: type-is@~1.6.6


	deps: mime-types@~2.1.4










1.13.2 / 2015-07-05


	deps: iconv-lite@0.4.11


	deps: qs@4.0.0


	Fix dropping parameters like hasOwnProperty


	Fix user-visible incompatibilities from 3.1.0


	Fix various parsing edge cases






	deps: raw-body@~2.1.2


	Fix error stack traces to skip makeError


	deps: iconv-lite@0.4.11






	deps: type-is@~1.6.4


	deps: mime-types@~2.1.2


	perf: enable strict mode


	perf: remove argument reassignment










1.13.1 / 2015-06-16


	deps: qs@2.4.2


	Downgraded from 3.1.0 because of user-visible incompatibilities










1.13.0 / 2015-06-14


	Add statusCode property on Errors, in addition to status


	Change type default to application/json for JSON parser


	Change type default to application/x-www-form-urlencoded for urlencoded parser


	Provide static require analysis


	Use the http-errors module to generate errors


	deps: bytes@2.1.0


	Slight optimizations






	deps: iconv-lite@0.4.10


	The encoding UTF-16 without BOM now defaults to UTF-16LE when detection fails


	Leading BOM is now removed when decoding






	deps: on-finished@~2.3.0


	Add defined behavior for HTTP CONNECT requests


	Add defined behavior for HTTP Upgrade requests


	deps: ee-first@1.1.1






	deps: qs@3.1.0


	Fix dropping parameters like hasOwnProperty


	Fix various parsing edge cases


	Parsed object now has null prototype






	deps: raw-body@~2.1.1


	Use unpipe module for unpiping requests


	deps: iconv-lite@0.4.10






	deps: type-is@~1.6.3


	deps: mime-types@~2.1.1


	perf: reduce try block size


	perf: remove bitwise operations






	perf: enable strict mode


	perf: remove argument reassignment


	perf: remove delete call






1.12.4 / 2015-05-10


	deps: debug@~2.2.0


	deps: qs@2.4.2


	Fix allowing parameters like constructor






	deps: on-finished@~2.2.1


	deps: raw-body@~2.0.1


	Fix a false-positive when unpiping in Node.js 0.8


	deps: bytes@2.0.1






	deps: type-is@~1.6.2


	deps: mime-types@~2.0.11










1.12.3 / 2015-04-15


	Slight efficiency improvement when not debugging


	deps: depd@~1.0.1


	deps: iconv-lite@0.4.8


	Add encoding alias UNICODE-1-1-UTF-7






	deps: raw-body@1.3.4


	Fix hanging callback if request aborts during read


	deps: iconv-lite@0.4.8










1.12.2 / 2015-03-16


	deps: qs@2.4.1


	Fix error when parameter hasOwnProperty is present










1.12.1 / 2015-03-15


	deps: debug@~2.1.3


	Fix high intensity foreground color for bold


	deps: ms@0.7.0






	deps: type-is@~1.6.1


	deps: mime-types@~2.0.10










1.12.0 / 2015-02-13


	add debug messages


	accept a function for the type option


	use content-type to parse Content-Type headers


	deps: iconv-lite@0.4.7


	Gracefully support enumerables on Object.prototype






	deps: raw-body@1.3.3


	deps: iconv-lite@0.4.7






	deps: type-is@~1.6.0


	fix argument reassignment


	fix false-positives in hasBody Transfer-Encoding check


	support wildcard for both type and subtype (*/*)


	deps: mime-types@~2.0.9










1.11.0 / 2015-01-30


	make internal extended: true depth limit infinity


	deps: type-is@~1.5.6


	deps: mime-types@~2.0.8










1.10.2 / 2015-01-20


	deps: iconv-lite@0.4.6


	Fix rare aliases of single-byte encodings






	deps: raw-body@1.3.2


	deps: iconv-lite@0.4.6










1.10.1 / 2015-01-01


	deps: on-finished@~2.2.0


	deps: type-is@~1.5.5


	deps: mime-types@~2.0.7










1.10.0 / 2014-12-02


	make internal extended: true array limit dynamic






1.9.3 / 2014-11-21


	deps: iconv-lite@0.4.5


	Fix Windows-31J and X-SJIS encoding support






	deps: qs@2.3.3


	Fix arrayLimit behavior






	deps: raw-body@1.3.1


	deps: iconv-lite@0.4.5






	deps: type-is@~1.5.3


	deps: mime-types@~2.0.3










1.9.2 / 2014-10-27


	deps: qs@2.3.2


	Fix parsing of mixed objects and values










1.9.1 / 2014-10-22


	deps: on-finished@~2.1.1


	Fix handling of pipelined requests






	deps: qs@2.3.0


	Fix parsing of mixed implicit and explicit arrays






	deps: type-is@~1.5.2


	deps: mime-types@~2.0.2










1.9.0 / 2014-09-24


	include the charset in “unsupported charset” error message


	include the encoding in “unsupported content encoding” error message


	deps: depd@~1.0.0






1.8.4 / 2014-09-23


	fix content encoding to be case-insensitive






1.8.3 / 2014-09-19


	deps: qs@2.2.4


	Fix issue with object keys starting with numbers truncated










1.8.2 / 2014-09-15


	deps: depd@0.4.5






1.8.1 / 2014-09-07


	deps: media-typer@0.3.0


	deps: type-is@~1.5.1






1.8.0 / 2014-09-05


	make empty-body-handling consistent between chunked requests


	empty json produces {}


	empty raw produces new Buffer(0)


	empty text produces ''


	empty urlencoded produces {}






	deps: qs@2.2.3


	Fix issue where first empty value in array is discarded






	deps: type-is@~1.5.0


	fix hasbody to be true for content-length: 0










1.7.0 / 2014-09-01


	add parameterLimit option to urlencoded parser


	change urlencoded extended array limit to 100


	respond with 413 when over parameterLimit in urlencoded






1.6.7 / 2014-08-29


	deps: qs@2.2.2


	Remove unnecessary cloning










1.6.6 / 2014-08-27


	deps: qs@2.2.0


	Array parsing fix


	Performance improvements










1.6.5 / 2014-08-16


	deps: on-finished@2.1.0






1.6.4 / 2014-08-14


	deps: qs@1.2.2






1.6.3 / 2014-08-10


	deps: qs@1.2.1






1.6.2 / 2014-08-07


	deps: qs@1.2.0


	Fix parsing array of objects










1.6.1 / 2014-08-06


	deps: qs@1.1.0


	Accept urlencoded square brackets


	Accept empty values in implicit array notation










1.6.0 / 2014-08-05


	deps: qs@1.0.2


	Complete rewrite


	Limits array length to 20


	Limits object depth to 5


	Limits parameters to 1,000










1.5.2 / 2014-07-27


	deps: depd@0.4.4


	Work-around v8 generating empty stack traces










1.5.1 / 2014-07-26


	deps: depd@0.4.3


	Fix exception when global Error.stackTraceLimit is too low










1.5.0 / 2014-07-20


	deps: depd@0.4.2


	Add TRACE_DEPRECATION environment variable


	Remove non-standard grey color from color output


	Support --no-deprecation argument


	Support --trace-deprecation argument






	deps: iconv-lite@0.4.4


	Added encoding UTF-7






	deps: raw-body@1.3.0


	deps: iconv-lite@0.4.4


	Added encoding UTF-7


	Fix Cannot switch to old mode now error on Node.js 0.10+






	deps: type-is@~1.3.2






1.4.3 / 2014-06-19


	deps: type-is@1.3.1


	fix global variable leak










1.4.2 / 2014-06-19


	deps: type-is@1.3.0


	improve type parsing










1.4.1 / 2014-06-19


	fix urlencoded extended deprecation message






1.4.0 / 2014-06-19


	add text parser


	add raw parser


	check accepted charset in content-type (accepts utf-8)


	check accepted encoding in content-encoding (accepts identity)


	deprecate bodyParser() middleware; use .json() and .urlencoded() as needed


	deprecate urlencoded() without provided extended option


	lazy-load urlencoded parsers


	parsers split into files for reduced mem usage


	support gzip and deflate bodies


	set inflate: false to turn off






	deps: raw-body@1.2.2


	Support all encodings from iconv-lite










1.3.1 / 2014-06-11


	deps: type-is@1.2.1


	Switch dependency from mime to mime-types@1.0.0










1.3.0 / 2014-05-31


	add extended option to urlencoded parser






1.2.2 / 2014-05-27


	deps: raw-body@1.1.6


	assert stream encoding on node.js 0.8


	assert stream encoding on node.js < 0.10.6


	deps: bytes@1










1.2.1 / 2014-05-26


	invoke next(err) after request fully read


	prevents hung responses and socket hang ups










1.2.0 / 2014-05-11


	add verify option


	deps: type-is@1.2.0


	support suffix matching










1.1.2 / 2014-05-11


	improve json parser speed






1.1.1 / 2014-05-11


	fix repeated limit parsing with every request






1.1.0 / 2014-05-10


	add type option


	deps: pin for safety and consistency






1.0.2 / 2014-04-14


	use type-is module






1.0.1 / 2014-03-20


	lower default limits to 100kb







          

      

      

    

  

  
    

    body-parser
    

    
 
  

    
      
          
            
  
body-parser

[image: ../../_images/body-parser.svg]NPM Version [https://npmjs.org/package/body-parser]
[image: ../../_images/body-parser1.svg]NPM Downloads [https://npmjs.org/package/body-parser]
[image: ../../_images/master5.svg]Build Status [https://travis-ci.org/expressjs/body-parser]
[image: ../../_images/master6.svg]Test Coverage [https://coveralls.io/r/expressjs/body-parser?branch=master]

Node.js body parsing middleware.

Parse incoming request bodies in a middleware before your handlers, available
under the req.body property.

Note As req.body’s shape is based on user-controlled input, all
properties and values in this object are untrusted and should be validated
before trusting. For example, req.body.foo.toString() may fail in multiple
ways, for example the foo property may not be there or may not be a string,
and toString may not be a function and instead a string or other user input.

Learn about the anatomy of an HTTP transaction in Node.js [https://nodejs.org/en/docs/guides/anatomy-of-an-http-transaction/].

This does not handle multipart bodies, due to their complex and typically
large nature. For multipart bodies, you may be interested in the following
modules:


	busboy [https://www.npmjs.org/package/busboy#readme] and
connect-busboy [https://www.npmjs.org/package/connect-busboy#readme]


	multiparty [https://www.npmjs.org/package/multiparty#readme] and
connect-multiparty [https://www.npmjs.org/package/connect-multiparty#readme]


	formidable [https://www.npmjs.org/package/formidable#readme]


	multer [https://www.npmjs.org/package/multer#readme]




This module provides the following parsers:


	JSON body parser


	Raw body parser


	Text body parser


	URL-encoded form body parser




Other body parsers you might be interested in:


	body [https://www.npmjs.org/package/body#readme]


	co-body [https://www.npmjs.org/package/co-body#readme]





Installation

$ npm install body-parser







API

var bodyParser = require('body-parser')





The bodyParser object exposes various factories to create middlewares. All
middlewares will populate the req.body property with the parsed body when
the Content-Type request header matches the type option, or an empty
object ({}) if there was no body to parse, the Content-Type was not matched,
or an error occurred.

The various errors returned by this module are described in the
errors section.


bodyParser.json([options])

Returns middleware that only parses json and only looks at requests where
the Content-Type header matches the type option. This parser accepts any
Unicode encoding of the body and supports automatic inflation of gzip and
deflate encodings.

A new body object containing the parsed data is populated on the request
object after the middleware (i.e. req.body).


Options

The json function takes an optional options object that may contain any of
the following keys:


inflate

When set to true, then deflated (compressed) bodies will be inflated; when
false, deflated bodies are rejected. Defaults to true.



limit

Controls the maximum request body size. If this is a number, then the value
specifies the number of bytes; if it is a string, the value is passed to the
bytes [https://www.npmjs.com/package/bytes] library for parsing. Defaults
to '100kb'.



reviver

The reviver option is passed directly to JSON.parse as the second
argument. You can find more information on this argument
in the MDN documentation about JSON.parse [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON/parse#Example.3A_Using_the_reviver_parameter].



strict

When set to true, will only accept arrays and objects; when false will
accept anything JSON.parse accepts. Defaults to true.



type

The type option is used to determine what media type the middleware will
parse. This option can be a string, array of strings, or a function. If not a
function, type option is passed directly to the
type-is [https://www.npmjs.org/package/type-is#readme] library and this can
be an extension name (like json), a mime type (like application/json), or
a mime type with a wildcard (like */* or */json). If a function, the type
option is called as fn(req) and the request is parsed if it returns a truthy
value. Defaults to application/json.



verify

The verify option, if supplied, is called as verify(req, res, buf, encoding),
where buf is a Buffer of the raw request body and encoding is the
encoding of the request. The parsing can be aborted by throwing an error.





bodyParser.raw([options])

Returns middleware that parses all bodies as a Buffer and only looks at
requests where the Content-Type header matches the type option. This
parser supports automatic inflation of gzip and deflate encodings.

A new body object containing the parsed data is populated on the request
object after the middleware (i.e. req.body). This will be a Buffer object
of the body.


Options

The raw function takes an optional options object that may contain any of
the following keys:


inflate

When set to true, then deflated (compressed) bodies will be inflated; when
false, deflated bodies are rejected. Defaults to true.



limit

Controls the maximum request body size. If this is a number, then the value
specifies the number of bytes; if it is a string, the value is passed to the
bytes [https://www.npmjs.com/package/bytes] library for parsing. Defaults
to '100kb'.



type

The type option is used to determine what media type the middleware will
parse. This option can be a string, array of strings, or a function.
If not a function, type option is passed directly to the
type-is [https://www.npmjs.org/package/type-is#readme] library and this
can be an extension name (like bin), a mime type (like
application/octet-stream), or a mime type with a wildcard (like */* or
application/*). If a function, the type option is called as fn(req)
and the request is parsed if it returns a truthy value. Defaults to
application/octet-stream.



verify

The verify option, if supplied, is called as verify(req, res, buf, encoding),
where buf is a Buffer of the raw request body and encoding is the
encoding of the request. The parsing can be aborted by throwing an error.





bodyParser.text([options])

Returns middleware that parses all bodies as a string and only looks at
requests where the Content-Type header matches the type option. This
parser supports automatic inflation of gzip and deflate encodings.

A new body string containing the parsed data is populated on the request
object after the middleware (i.e. req.body). This will be a string of the
body.


Options

The text function takes an optional options object that may contain any of
the following keys:


defaultCharset

Specify the default character set for the text content if the charset is not
specified in the Content-Type header of the request. Defaults to utf-8.



inflate

When set to true, then deflated (compressed) bodies will be inflated; when
false, deflated bodies are rejected. Defaults to true.



limit

Controls the maximum request body size. If this is a number, then the value
specifies the number of bytes; if it is a string, the value is passed to the
bytes [https://www.npmjs.com/package/bytes] library for parsing. Defaults
to '100kb'.



type

The type option is used to determine what media type the middleware will
parse. This option can be a string, array of strings, or a function. If not
a function, type option is passed directly to the
type-is [https://www.npmjs.org/package/type-is#readme] library and this can
be an extension name (like txt), a mime type (like text/plain), or a mime
type with a wildcard (like */* or text/*). If a function, the type
option is called as fn(req) and the request is parsed if it returns a
truthy value. Defaults to text/plain.



verify

The verify option, if supplied, is called as verify(req, res, buf, encoding),
where buf is a Buffer of the raw request body and encoding is the
encoding of the request. The parsing can be aborted by throwing an error.





bodyParser.urlencoded([options])

Returns middleware that only parses urlencoded bodies and only looks at
requests where the Content-Type header matches the type option. This
parser accepts only UTF-8 encoding of the body and supports automatic
inflation of gzip and deflate encodings.

A new body object containing the parsed data is populated on the request
object after the middleware (i.e. req.body). This object will contain
key-value pairs, where the value can be a string or array (when extended is
false), or any type (when extended is true).


Options

The urlencoded function takes an optional options object that may contain
any of the following keys:


extended

The extended option allows to choose between parsing the URL-encoded data
with the querystring library (when false) or the qs library (when
true). The “extended” syntax allows for rich objects and arrays to be
encoded into the URL-encoded format, allowing for a JSON-like experience
with URL-encoded. For more information, please
see the qs library [https://www.npmjs.org/package/qs#readme].

Defaults to true, but using the default has been deprecated. Please
research into the difference between qs and querystring and choose the
appropriate setting.



inflate

When set to true, then deflated (compressed) bodies will be inflated; when
false, deflated bodies are rejected. Defaults to true.



limit

Controls the maximum request body size. If this is a number, then the value
specifies the number of bytes; if it is a string, the value is passed to the
bytes [https://www.npmjs.com/package/bytes] library for parsing. Defaults
to '100kb'.



parameterLimit

The parameterLimit option controls the maximum number of parameters that
are allowed in the URL-encoded data. If a request contains more parameters
than this value, a 413 will be returned to the client. Defaults to 1000.



type

The type option is used to determine what media type the middleware will
parse. This option can be a string, array of strings, or a function. If not
a function, type option is passed directly to the
type-is [https://www.npmjs.org/package/type-is#readme] library and this can
be an extension name (like urlencoded), a mime type (like
application/x-www-form-urlencoded), or a mime type with a wildcard (like
*/x-www-form-urlencoded). If a function, the type option is called as
fn(req) and the request is parsed if it returns a truthy value. Defaults
to application/x-www-form-urlencoded.



verify

The verify option, if supplied, is called as verify(req, res, buf, encoding),
where buf is a Buffer of the raw request body and encoding is the
encoding of the request. The parsing can be aborted by throwing an error.






Errors

The middlewares provided by this module create errors depending on the error
condition during parsing. The errors will typically have a status/statusCode
property that contains the suggested HTTP response code, an expose property
to determine if the message property should be displayed to the client, a
type property to determine the type of error without matching against the
message, and a body property containing the read body, if available.

The following are the common errors emitted, though any error can come through
for various reasons.


content encoding unsupported

This error will occur when the request had a Content-Encoding header that
contained an encoding but the “inflation” option was set to false. The
status property is set to 415, the type property is set to
'encoding.unsupported', and the charset property will be set to the
encoding that is unsupported.



request aborted

This error will occur when the request is aborted by the client before reading
the body has finished. The received property will be set to the number of
bytes received before the request was aborted and the expected property is
set to the number of expected bytes. The status property is set to 400
and type property is set to 'request.aborted'.



request entity too large

This error will occur when the request body’s size is larger than the “limit”
option. The limit property will be set to the byte limit and the length
property will be set to the request body’s length. The status property is
set to 413 and the type property is set to 'entity.too.large'.



request size did not match content length

This error will occur when the request’s length did not match the length from
the Content-Length header. This typically occurs when the request is malformed,
typically when the Content-Length header was calculated based on characters
instead of bytes. The status property is set to 400 and the type property
is set to 'request.size.invalid'.



stream encoding should not be set

This error will occur when something called the req.setEncoding method prior
to this middleware. This module operates directly on bytes only and you cannot
call req.setEncoding when using this module. The status property is set to
500 and the type property is set to 'stream.encoding.set'.



too many parameters

This error will occur when the content of the request exceeds the configured
parameterLimit for the urlencoded parser. The status property is set to
413 and the type property is set to 'parameters.too.many'.



unsupported charset “BOGUS”

This error will occur when the request had a charset parameter in the
Content-Type header, but the iconv-lite module does not support it OR the
parser does not support it. The charset is contained in the message as well
as in the charset property. The status property is set to 415, the
type property is set to 'charset.unsupported', and the charset property
is set to the charset that is unsupported.



unsupported content encoding “bogus”

This error will occur when the request had a Content-Encoding header that
contained an unsupported encoding. The encoding is contained in the message
as well as in the encoding property. The status property is set to 415,
the type property is set to 'encoding.unsupported', and the encoding
property is set to the encoding that is unsupported.




Examples


Express/Connect top-level generic

This example demonstrates adding a generic JSON and URL-encoded parser as a
top-level middleware, which will parse the bodies of all incoming requests.
This is the simplest setup.

var express = require('express')
var bodyParser = require('body-parser')

var app = express()

// parse application/x-www-form-urlencoded
app.use(bodyParser.urlencoded({ extended: false }))

// parse application/json
app.use(bodyParser.json())

app.use(function (req, res) {
  res.setHeader('Content-Type', 'text/plain')
  res.write('you posted:\n')
  res.end(JSON.stringify(req.body, null, 2))
})







Express route-specific

This example demonstrates adding body parsers specifically to the routes that
need them. In general, this is the most recommended way to use body-parser with
Express.

var express = require('express')
var bodyParser = require('body-parser')

var app = express()

// create application/json parser
var jsonParser = bodyParser.json()

// create application/x-www-form-urlencoded parser
var urlencodedParser = bodyParser.urlencoded({ extended: false })

// POST /login gets urlencoded bodies
app.post('/login', urlencodedParser, function (req, res) {
  res.send('welcome, ' + req.body.username)
})

// POST /api/users gets JSON bodies
app.post('/api/users', jsonParser, function (req, res) {
  // create user in req.body
})







Change accepted type for parsers

All the parsers accept a type option which allows you to change the
Content-Type that the middleware will parse.

var express = require('express')
var bodyParser = require('body-parser')

var app = express()

// parse various different custom JSON types as JSON
app.use(bodyParser.json({ type: 'application/*+json' }))

// parse some custom thing into a Buffer
app.use(bodyParser.raw({ type: 'application/vnd.custom-type' }))

// parse an HTML body into a string
app.use(bodyParser.text({ type: 'text/html' }))








License

MIT





          

      

      

    

  

  
    

    2019-02-18 / 1.7.2
    

    
 
  

    
      
          
            
  
2019-02-18 / 1.7.2


	deps: setprototypeof@1.1.1






2018-09-08 / 1.7.1


	Fix error creating objects in some environments






2018-07-30 / 1.7.0


	Set constructor name when possible


	Use toidentifier module to make class names


	deps: statuses@’>= 1.5.0 < 2’






2018-03-29 / 1.6.3


	deps: depd@~1.1.2


	perf: remove argument reassignment






	deps: setprototypeof@1.1.0


	deps: statuses@’>= 1.4.0 < 2’






2017-08-04 / 1.6.2


	deps: depd@1.1.1


	Remove unnecessary Buffer loading










2017-02-20 / 1.6.1


	deps: setprototypeof@1.0.3


	Fix shim for old browsers










2017-02-14 / 1.6.0


	Accept custom 4xx and 5xx status codes in factory


	Add deprecation message to "I'mateapot" export


	Deprecate passing status code as anything except first argument in factory


	Deprecate using non-error status codes


	Make message property enumerable for HttpErrors






2016-11-16 / 1.5.1


	deps: inherits@2.0.3


	Fix issue loading in browser






	deps: setprototypeof@1.0.2


	deps: statuses@’>= 1.3.1 < 2’






2016-05-18 / 1.5.0


	Support new code 421 Misdirected Request


	Use setprototypeof module to replace __proto__ setting


	deps: statuses@’>= 1.3.0 < 2’


	Add 421 Misdirected Request


	perf: enable strict mode






	perf: enable strict mode






2016-01-28 / 1.4.0


	Add HttpError export, for err instanceof createError.HttpError


	deps: inherits@2.0.1


	deps: statuses@’>= 1.2.1 < 2’


	Fix message for status 451


	Remove incorrect nginx status code










2015-02-02 / 1.3.1


	Fix regression where status can be overwritten in createError props






2015-02-01 / 1.3.0


	Construct errors using defined constructors from createError


	Fix error names that are not identifiers


	createError["I'mateapot"] is now createError.ImATeapot






	Set a meaningful name property on constructed errors






2014-12-09 / 1.2.8


	Fix stack trace from exported function


	Remove arguments.callee usage






2014-10-14 / 1.2.7


	Remove duplicate line






2014-10-02 / 1.2.6


	Fix expose to be true for ClientError constructor






2014-09-28 / 1.2.5


	deps: statuses@1






2014-09-21 / 1.2.4


	Fix dependency version to work with old npms






2014-09-21 / 1.2.3


	deps: statuses@~1.1.0






2014-09-21 / 1.2.2


	Fix publish error






2014-09-21 / 1.2.1


	Support Node.js 0.6


	Use inherits instead of util






2014-09-09 / 1.2.0


	Fix the way inheriting functions


	Support expose being provided in properties argument






2014-09-08 / 1.1.0


	Default status to 500


	Support provided error to extend






2014-09-08 / 1.0.1


	Fix accepting string message






2014-09-08 / 1.0.0


	Initial release







          

      

      

    

  

  
    

    http-errors
    

    
 
  

    
      
          
            
  
http-errors

[image: ../../../../_images/http-errors.svg]NPM Version [https://npmjs.org/package/http-errors]
[image: ../../../../_images/http-errors1.svg]NPM Downloads [https://nodejs.org/en/download]
[image: ../../../../_images/http-errors2.svg]Node.js Version [https://nodejs.org/en/download]
[image: ../../../../_images/master7.svg]Build Status [https://travis-ci.org/jshttp/http-errors]
[image: ../../../../_images/master8.svg]Test Coverage [https://coveralls.io/r/jshttp/http-errors?branch=master]

Create HTTP errors for Express, Koa, Connect, etc. with ease.


Install

This is a Node.js [https://nodejs.org/en/] module available through the
npm registry [https://www.npmjs.com/]. Installation is done using the
npm install command [https://docs.npmjs.com/getting-started/installing-npm-packages-locally]:

$ npm install http-errors







Example

var createError = require('http-errors')
var express = require('express')
var app = express()

app.use(function (req, res, next) {
  if (!req.user) return next(createError(401, 'Please login to view this page.'))
  next()
})







API

This is the current API, currently extracted from Koa and subject to change.


Error Properties


	expose - can be used to signal if message should be sent to the client,
defaulting to false when status >= 500


	headers - can be an object of header names to values to be sent to the
client, defaulting to undefined. When defined, the key names should all
be lower-cased


	message - the traditional error message, which should be kept short and all
single line


	status - the status code of the error, mirroring statusCode for general
compatibility


	statusCode - the status code of the error, defaulting to 500






createError([status], [message], [properties])

Create a new error object with the given message msg.
The error object inherits from createError.HttpError.

var err = createError(404, 'This video does not exist!')






	status: 500 - the status code as a number


	message - the message of the error, defaulting to node’s text for that status code.


	properties - custom properties to attach to the object






createError([status], [error], [properties])

Extend the given error object with createError.HttpError
properties. This will not alter the inheritance of the given
error object, and the modified error object is the
return value.

fs.readFile('foo.txt', function (err, buf) {
  if (err) {
    if (err.code === 'ENOENT') {
      var httpError = createError(404, err, { expose: false })
    } else {
      var httpError = createError(500, err)
    }
  }
})






	status - the status code as a number


	error - the error object to extend


	properties - custom properties to attach to the object






new createError[code || name]([msg]))

Create a new error object with the given message msg.
The error object inherits from createError.HttpError.

var err = new createError.NotFound()






	code - the status code as a number


	name - the name of the error as a “bumpy case”, i.e. NotFound or InternalServerError.





List of all constructors

|Status Code|Constructor Name             |
|———–|—————————–|
|400        |BadRequest                   |
|401        |Unauthorized                 |
|402        |PaymentRequired              |
|403        |Forbidden                    |
|404        |NotFound                     |
|405        |MethodNotAllowed             |
|406        |NotAcceptable                |
|407        |ProxyAuthenticationRequired  |
|408        |RequestTimeout               |
|409        |Conflict                     |
|410        |Gone                         |
|411        |LengthRequired               |
|412        |PreconditionFailed           |
|413        |PayloadTooLarge              |
|414        |URITooLong                   |
|415        |UnsupportedMediaType         |
|416        |RangeNotSatisfiable          |
|417        |ExpectationFailed            |
|418        |ImATeapot                    |
|421        |MisdirectedRequest           |
|422        |UnprocessableEntity          |
|423        |Locked                       |
|424        |FailedDependency             |
|425        |UnorderedCollection          |
|426        |UpgradeRequired              |
|428        |PreconditionRequired         |
|429        |TooManyRequests              |
|431        |RequestHeaderFieldsTooLarge  |
|451        |UnavailableForLegalReasons   |
|500        |InternalServerError          |
|501        |NotImplemented               |
|502        |BadGateway                   |
|503        |ServiceUnavailable           |
|504        |GatewayTimeout               |
|505        |HTTPVersionNotSupported      |
|506        |VariantAlsoNegotiates        |
|507        |InsufficientStorage          |
|508        |LoopDetected                 |
|509        |BandwidthLimitExceeded       |
|510        |NotExtended                  |
|511        |NetworkAuthenticationRequired|





License

MIT





          

      

      

    

  

  
    

    6.7.0
    

    
 
  

    
      
          
            
  
6.7.0


	[New] stringify/parse: add comma as an arrayFormat option (#276, #219)


	[Fix] correctly parse nested arrays (#212)


	[Fix] utils.merge: avoid a crash with a null target and a truthy non-array source, also with an array source


	[Robustness] stringify: cache Object.prototype.hasOwnProperty


	[Refactor] utils: isBuffer: small tweak; add tests


	[Refactor] use cached Array.isArray


	[Refactor] parse/stringify: make a function to normalize the options


	[Refactor] utils: reduce observable [[Get]]s


	[Refactor] stringify/utils: cache Array.isArray


	[Tests] always use String(x) over x.toString()


	[Tests] fix Buffer tests to work in node < 4.5 and node < 5.10


	[Tests] temporarily allow coverage to fail






6.6.0


	[New] Add support for iso-8859-1, utf8 “sentinel” and numeric entities (#268)


	[New] move two-value combine to a utils function (#189)


	[Fix] stringify: fix a crash with strictNullHandling and a custom filter/serializeDate (#279)


	[Fix] when parseArrays is false, properly handle keys ending in [] (#260)


	[Fix] stringify: do not crash in an obscure combo of interpretNumericEntities, a bad custom decoder, & iso-8859-1


	[Fix] utils: merge: fix crash when source is a truthy primitive & no options are provided


	[refactor] stringify: Avoid arr = arr.concat(…), push to the existing instance (#269)


	[Refactor] parse: only need to reassign the var once


	[Refactor] parse/stringify: clean up charset options checking; fix defaults


	[Refactor] add missing defaults


	[Refactor] parse: one less concat call


	[Refactor] utils: compactQueue: make it explicitly side-effecting


	[Dev Deps] update browserify, eslint, @ljharb/eslint-config, iconv-lite, safe-publish-latest, tape


	[Tests] up to node v10.10, v9.11, v8.12, v6.14, v4.9; pin included builds to LTS






6.5.2


	[Fix] use safer-buffer instead of Buffer constructor


	[Refactor] utils: module.exports one thing, instead of mutating exports (#230)


	[Dev Deps] update browserify, eslint, iconv-lite, safer-buffer, tape, browserify






6.5.1


	[Fix] Fix parsing & compacting very deep objects (#224)


	[Refactor] name utils functions


	[Dev Deps] update eslint, @ljharb/eslint-config, tape


	[Tests] up to node v8.4; use nvm install-latest-npm so newer npm doesn’t break older node


	[Tests] Use precise dist for Node.js 0.6 runtime (#225)


	[Tests] make 0.6 required, now that it’s passing


	[Tests] on node v8.2; fix npm on node 0.6






6.5.0


	[New] add utils.assign


	[New] pass default encoder/decoder to custom encoder/decoder functions (#206)


	[New] parse/stringify: add ignoreQueryPrefix/addQueryPrefix options, respectively (#213)


	[Fix] Handle stringifying empty objects with addQueryPrefix (#217)


	[Fix] do not mutate options argument (#207)


	[Refactor] parse: cache index to reuse in else statement (#182)


	[Docs] add various badges to readme (#208)


	[Dev Deps] update eslint, browserify, iconv-lite, tape


	[Tests] up to node v8.1, v7.10, v6.11; npm v4.6 breaks on node < v1; npm v5+ breaks on node < v4


	[Tests] add editorconfig-tools






6.4.0


	[New] qs.stringify: add encodeValuesOnly option


	[Fix] follow allowPrototypes option during merge (#201, #201)


	[Fix] support keys starting with brackets (#202, #200)


	[Fix] chmod a-x


	[Dev Deps] update eslint


	[Tests] up to node v7.7, v6.10, v4.8; disable osx builds since they block linux builds


	[eslint] reduce warnings






6.3.2


	[Fix] follow allowPrototypes option during merge (#201, #200)


	[Dev Deps] update eslint


	[Fix] chmod a-x


	[Fix] support keys starting with brackets (#202, #200)


	[Tests] up to node v7.7, v6.10, v4.8; disable osx builds since they block linux builds






6.3.1


	[Fix] ensure that allowPrototypes: false does not ever shadow Object.prototype properties (thanks, @snyk!)


	[Dev Deps] update eslint, @ljharb/eslint-config, browserify, iconv-lite, qs-iconv, tape


	[Tests] on all node minors; improve test matrix


	[Docs] document stringify option allowDots (#195)


	[Docs] add empty object and array values example (#195)


	[Docs] Fix minor inconsistency/typo (#192)


	[Docs] document stringify option sort (#191)


	[Refactor] stringify: throw faster with an invalid encoder


	[Refactor] remove unnecessary escapes (#184)


	Remove contributing.md, since qs is no longer part of hapi (#183)






6.3.0


	[New] Add support for RFC 1738 (#174, #173)


	[New] stringify: Add serializeDate option to customize Date serialization (#159)


	[Fix] ensure utils.merge handles merging two arrays


	[Refactor] only constructors should be capitalized


	[Refactor] capitalized var names are for constructors only


	[Refactor] avoid using a sparse array


	[Robustness] formats: cache String#replace


	[Dev Deps] update browserify, eslint, @ljharb/eslint-config; add safe-publish-latest


	[Tests] up to node v6.8, v4.6; improve test matrix


	[Tests] flesh out arrayLimit/arrayFormat tests (#107)


	[Tests] skip Object.create tests when null objects are not available


	[Tests] Turn on eslint for test files (#175)






6.2.3


	[Fix] follow allowPrototypes option during merge (#201, #200)


	[Fix] chmod a-x


	[Fix] support keys starting with brackets (#202, #200)


	[Tests] up to node v7.7, v6.10, v4.8; disable osx builds since they block linux builds






6.2.2


	[Fix] ensure that allowPrototypes: false does not ever shadow Object.prototype properties






6.2.1


	[Fix] ensure key[]=x&key[]&key[]=y results in 3, not 2, values


	[Refactor] Be explicit and use Object.prototype.hasOwnProperty.call


	[Tests] remove parallelshell since it does not reliably report failures


	[Tests] up to node v6.3, v5.12


	[Dev Deps] update tape, eslint, @ljharb/eslint-config, qs-iconv






6.2.0 [https://github.com/ljharb/qs/issues?milestone=36&state=closed]


	[New] pass Buffers to the encoder/decoder directly (#161)


	[New] add “encoder” and “decoder” options, for custom param encoding/decoding (#160)


	[Fix] fix compacting of nested sparse arrays (#150)






**6.1.2


	[Fix] follow allowPrototypes option during merge (#201, #200)


	[Fix] chmod a-x


	[Fix] support keys starting with brackets (#202, #200)


	[Tests] up to node v7.7, v6.10, v4.8; disable osx builds since they block linux builds






6.1.1


	[Fix] ensure that allowPrototypes: false does not ever shadow Object.prototype properties






6.1.0 [https://github.com/ljharb/qs/issues?milestone=35&state=closed]


	[New] allowDots option for stringify (#151)


	[Fix] “sort” option should work at a depth of 3 or more (#151)


	[Fix] Restore dist directory; will be removed in v7 (#148)






6.0.4


	[Fix] follow allowPrototypes option during merge (#201, #200)


	[Fix] chmod a-x


	[Fix] support keys starting with brackets (#202, #200)


	[Tests] up to node v7.7, v6.10, v4.8; disable osx builds since they block linux builds






6.0.3


	[Fix] ensure that allowPrototypes: false does not ever shadow Object.prototype properties


	[Fix] Restore dist directory; will be removed in v7 (#148)






6.0.2 [https://github.com/ljharb/qs/issues?milestone=33&state=closed]


	Revert ES6 requirement and restore support for node down to v0.8.






6.0.1 [https://github.com/ljharb/qs/issues?milestone=32&state=closed]


	#127 [https://github.com/ljharb/qs/pull/127] Fix engines definition in package.json






6.0.0 [https://github.com/ljharb/qs/issues?milestone=31&state=closed]


	#124 [https://github.com/ljharb/qs/issues/124] Use ES6 and drop support for node < v4






5.2.1


	[Fix] ensure key[]=x&key[]&key[]=y results in 3, not 2, values






5.2.0 [https://github.com/ljharb/qs/issues?milestone=30&state=closed]


	#64 [https://github.com/ljharb/qs/issues/64] Add option to sort object keys in the query string






5.1.0 [https://github.com/ljharb/qs/issues?milestone=29&state=closed]


	#117 [https://github.com/ljharb/qs/issues/117] make URI encoding stringified results optional


	#106 [https://github.com/ljharb/qs/issues/106] Add flag skipNulls to optionally skip null values in stringify






5.0.0 [https://github.com/ljharb/qs/issues?milestone=28&state=closed]


	#114 [https://github.com/ljharb/qs/issues/114] default allowDots to false


	#100 [https://github.com/ljharb/qs/issues/100] include dist to npm






4.0.0 [https://github.com/ljharb/qs/issues?milestone=26&state=closed]


	#98 [https://github.com/ljharb/qs/issues/98] make returning plain objects and allowing prototype overwriting properties optional






3.1.0 [https://github.com/ljharb/qs/issues?milestone=24&state=closed]


	#89 [https://github.com/ljharb/qs/issues/89] Add option to disable “Transform dot notation to bracket notation”






3.0.0 [https://github.com/ljharb/qs/issues?milestone=23&state=closed]


	#80 [https://github.com/ljharb/qs/issues/80] qs.parse silently drops properties


	#77 [https://github.com/ljharb/qs/issues/77] Perf boost


	#60 [https://github.com/ljharb/qs/issues/60] Add explicit option to disable array parsing


	#74 [https://github.com/ljharb/qs/issues/74] Bad parse when turning array into object


	#81 [https://github.com/ljharb/qs/issues/81] Add a filter option


	#68 [https://github.com/ljharb/qs/issues/68] Fixed issue with recursion and passing strings into objects.


	#66 [https://github.com/ljharb/qs/issues/66] Add mixed array and object dot notation support Closes: #47


	#76 [https://github.com/ljharb/qs/issues/76] RFC 3986


	#85 [https://github.com/ljharb/qs/issues/85] No equal sign


	#84 [https://github.com/ljharb/qs/issues/84] update license attribute






2.4.1 [https://github.com/ljharb/qs/issues?milestone=20&state=closed]


	#73 [https://github.com/ljharb/qs/issues/73] Property ‘hasOwnProperty’ of object # is not a function
  
    

    qs
    

    
 
  

    
      
          
            
  
qs [image: ../../../../_images/qs.svg]Version Badge [https://npmjs.org/package/qs]

[image: ../../../../_images/qs1.svg]Build Status [https://travis-ci.org/ljharb/qs]
[image: https://david-dm.org/ljharb/qs.svg]dependency status [https://david-dm.org/ljharb/qs]
[image: https://david-dm.org/ljharb/qs/dev-status.svg]dev dependency status [https://david-dm.org/ljharb/qs?type=dev]
[image: ../../../../_images/qs2.svg]License
[image: ../../../../_images/qs3.svg]Downloads [http://npm-stat.com/charts.html?package=qs]

[image: ../../../../_images/qs.png]npm badge [https://npmjs.org/package/qs]

A querystring parsing and stringifying library with some added security.

Lead Maintainer: Jordan Harband [https://github.com/ljharb]

The qs module was originally created and maintained by TJ Holowaychuk [https://github.com/visionmedia/node-querystring].


Usage

var qs = require('qs');
var assert = require('assert');

var obj = qs.parse('a=c');
assert.deepEqual(obj, { a: 'c' });

var str = qs.stringify(obj);
assert.equal(str, 'a=c');






Parsing Objects



qs.parse(string, [options]);





qs allows you to create nested objects within your query strings, by surrounding the name of sub-keys with square brackets [].
For example, the string 'foo[bar]=baz' converts to:

assert.deepEqual(qs.parse('foo[bar]=baz'), {
    foo: {
        bar: 'baz'
    }
});





When using the plainObjects option the parsed value is returned as a null object, created via Object.create(null) and as such you should be aware that prototype methods will not exist on it and a user may set those names to whatever value they like:

var nullObject = qs.parse('a[hasOwnProperty]=b', { plainObjects: true });
assert.deepEqual(nullObject, { a: { hasOwnProperty: 'b' } });





By default parameters that would overwrite properties on the object prototype are ignored, if you wish to keep the data from those fields either use plainObjects as mentioned above, or set allowPrototypes to true which will allow user input to overwrite those properties. WARNING It is generally a bad idea to enable this option as it can cause problems when attempting to use the properties that have been overwritten. Always be careful with this option.

var protoObject = qs.parse('a[hasOwnProperty]=b', { allowPrototypes: true });
assert.deepEqual(protoObject, { a: { hasOwnProperty: 'b' } });





URI encoded strings work too:

assert.deepEqual(qs.parse('a%5Bb%5D=c'), {
    a: { b: 'c' }
});





You can also nest your objects, like 'foo[bar][baz]=foobarbaz':

assert.deepEqual(qs.parse('foo[bar][baz]=foobarbaz'), {
    foo: {
        bar: {
            baz: 'foobarbaz'
        }
    }
});





By default, when nesting objects qs will only parse up to 5 children deep. This means if you attempt to parse a string like
'a[b][c][d][e][f][g][h][i]=j' your resulting object will be:

var expected = {
    a: {
        b: {
            c: {
                d: {
                    e: {
                        f: {
                            '[g][h][i]': 'j'
                        }
                    }
                }
            }
        }
    }
};
var string = 'a[b][c][d][e][f][g][h][i]=j';
assert.deepEqual(qs.parse(string), expected);





This depth can be overridden by passing a depth option to qs.parse(string, [options]):

var deep = qs.parse('a[b][c][d][e][f][g][h][i]=j', { depth: 1 });
assert.deepEqual(deep, { a: { b: { '[c][d][e][f][g][h][i]': 'j' } } });





The depth limit helps mitigate abuse when qs is used to parse user input, and it is recommended to keep it a reasonably small number.

For similar reasons, by default qs will only parse up to 1000 parameters. This can be overridden by passing a parameterLimit option:

var limited = qs.parse('a=b&c=d', { parameterLimit: 1 });
assert.deepEqual(limited, { a: 'b' });





To bypass the leading question mark, use ignoreQueryPrefix:

var prefixed = qs.parse('?a=b&c=d', { ignoreQueryPrefix: true });
assert.deepEqual(prefixed, { a: 'b', c: 'd' });





An optional delimiter can also be passed:

var delimited = qs.parse('a=b;c=d', { delimiter: ';' });
assert.deepEqual(delimited, { a: 'b', c: 'd' });





Delimiters can be a regular expression too:

var regexed = qs.parse('a=b;c=d,e=f', { delimiter: /[;,]/ });
assert.deepEqual(regexed, { a: 'b', c: 'd', e: 'f' });





Option allowDots can be used to enable dot notation:

var withDots = qs.parse('a.b=c', { allowDots: true });
assert.deepEqual(withDots, { a: { b: 'c' } });





If you have to deal with legacy browsers or services, there’s
also support for decoding percent-encoded octets as iso-8859-1:

var oldCharset = qs.parse('a=%A7', { charset: 'iso-8859-1' });
assert.deepEqual(oldCharset, { a: '§' });





Some services add an initial utf8=✓ value to forms so that old
Internet Explorer versions are more likely to submit the form as
utf-8. Additionally, the server can check the value against wrong
encodings of the checkmark character and detect that a query string
or application/x-www-form-urlencoded body was not sent as
utf-8, eg. if the form had an accept-charset parameter or the
containing page had a different character set.

qs supports this mechanism via the charsetSentinel option.
If specified, the utf8 parameter will be omitted from the
returned object. It will be used to switch to iso-8859-1/utf-8
mode depending on how the checkmark is encoded.

Important: When you specify both the charset option and the
charsetSentinel option, the charset will be overridden when
the request contains a utf8 parameter from which the actual
charset can be deduced. In that sense the charset will behave
as the default charset rather than the authoritative charset.

var detectedAsUtf8 = qs.parse('utf8=%E2%9C%93&a=%C3%B8', {
    charset: 'iso-8859-1',
    charsetSentinel: true
});
assert.deepEqual(detectedAsUtf8, { a: 'ø' });

// Browsers encode the checkmark as &#10003; when submitting as iso-8859-1:
var detectedAsIso8859_1 = qs.parse('utf8=%26%2310003%3B&a=%F8', {
    charset: 'utf-8',
    charsetSentinel: true
});
assert.deepEqual(detectedAsIso8859_1, { a: 'ø' });





If you want to decode the &#...; syntax to the actual character,
you can specify the interpretNumericEntities option as well:

var detectedAsIso8859_1 = qs.parse('a=%26%239786%3B', {
    charset: 'iso-8859-1',
    interpretNumericEntities: true
});
assert.deepEqual(detectedAsIso8859_1, { a: '☺' });





It also works when the charset has been detected in charsetSentinel
mode.



Parsing Arrays

qs can also parse arrays using a similar [] notation:

var withArray = qs.parse('a[]=b&a[]=c');
assert.deepEqual(withArray, { a: ['b', 'c'] });





You may specify an index as well:

var withIndexes = qs.parse('a[1]=c&a[0]=b');
assert.deepEqual(withIndexes, { a: ['b', 'c'] });





Note that the only difference between an index in an array and a key in an object is that the value between the brackets must be a number
to create an array. When creating arrays with specific indices, qs will compact a sparse array to only the existing values preserving
their order:

var noSparse = qs.parse('a[1]=b&a[15]=c');
assert.deepEqual(noSparse, { a: ['b', 'c'] });





Note that an empty string is also a value, and will be preserved:

var withEmptyString = qs.parse('a[]=&a[]=b');
assert.deepEqual(withEmptyString, { a: ['', 'b'] });

var withIndexedEmptyString = qs.parse('a[0]=b&a[1]=&a[2]=c');
assert.deepEqual(withIndexedEmptyString, { a: ['b', '', 'c'] });





qs will also limit specifying indices in an array to a maximum index of 20. Any array members with an index of greater than 20 will
instead be converted to an object with the index as the key. This is needed to handle cases when someone sent, for example, a[999999999] and it will take significant time to iterate over this huge array.

var withMaxIndex = qs.parse('a[100]=b');
assert.deepEqual(withMaxIndex, { a: { '100': 'b' } });





This limit can be overridden by passing an arrayLimit option:

var withArrayLimit = qs.parse('a[1]=b', { arrayLimit: 0 });
assert.deepEqual(withArrayLimit, { a: { '1': 'b' } });





To disable array parsing entirely, set parseArrays to false.

var noParsingArrays = qs.parse('a[]=b', { parseArrays: false });
assert.deepEqual(noParsingArrays, { a: { '0': 'b' } });





If you mix notations, qs will merge the two items into an object:

var mixedNotation = qs.parse('a[0]=b&a[b]=c');
assert.deepEqual(mixedNotation, { a: { '0': 'b', b: 'c' } });





You can also create arrays of objects:

var arraysOfObjects = qs.parse('a[][b]=c');
assert.deepEqual(arraysOfObjects, { a: [{ b: 'c' }] });





Some people use comma to join array, qs can parse it:

var arraysOfObjects = qs.parse('a=b,c', { comma: true })
assert.deepEqual(arraysOfObjects, { a: ['b', 'c'] })





(this cannot convert nested objects, such as a={b:1},{c:d})



Stringifying



qs.stringify(object, [options]);





When stringifying, qs by default URI encodes output. Objects are stringified as you would expect:

assert.equal(qs.stringify({ a: 'b' }), 'a=b');
assert.equal(qs.stringify({ a: { b: 'c' } }), 'a%5Bb%5D=c');





This encoding can be disabled by setting the encode option to false:

var unencoded = qs.stringify({ a: { b: 'c' } }, { encode: false });
assert.equal(unencoded, 'a[b]=c');





Encoding can be disabled for keys by setting the encodeValuesOnly option to true:

var encodedValues = qs.stringify(
    { a: 'b', c: ['d', 'e=f'], f: [['g'], ['h']] },
    { encodeValuesOnly: true }
);
assert.equal(encodedValues,'a=b&c[0]=d&c[1]=e%3Df&f[0][0]=g&f[1][0]=h');





This encoding can also be replaced by a custom encoding method set as encoder option:

var encoded = qs.stringify({ a: { b: 'c' } }, { encoder: function (str) {
    // Passed in values `a`, `b`, `c`
    return // Return encoded string
}})





(Note: the encoder option does not apply if encode is false)

Analogue to the encoder there is a decoder option for parse to override decoding of properties and values:

var decoded = qs.parse('x=z', { decoder: function (str) {
    // Passed in values `x`, `z`
    return // Return decoded string
}})





Examples beyond this point will be shown as though the output is not URI encoded for clarity. Please note that the return values in these cases will be URI encoded during real usage.

When arrays are stringified, by default they are given explicit indices:

qs.stringify({ a: ['b', 'c', 'd'] });
// 'a[0]=b&a[1]=c&a[2]=d'





You may override this by setting the indices option to false:

qs.stringify({ a: ['b', 'c', 'd'] }, { indices: false });
// 'a=b&a=c&a=d'





You may use the arrayFormat option to specify the format of the output array:

qs.stringify({ a: ['b', 'c'] }, { arrayFormat: 'indices' })
// 'a[0]=b&a[1]=c'
qs.stringify({ a: ['b', 'c'] }, { arrayFormat: 'brackets' })
// 'a[]=b&a[]=c'
qs.stringify({ a: ['b', 'c'] }, { arrayFormat: 'repeat' })
// 'a=b&a=c'
qs.stringify({ a: ['b', 'c'] }, { arrayFormat: 'comma' })
// 'a=b,c'





When objects are stringified, by default they use bracket notation:

qs.stringify({ a: { b: { c: 'd', e: 'f' } } });
// 'a[b][c]=d&a[b][e]=f'





You may override this to use dot notation by setting the allowDots option to true:

qs.stringify({ a: { b: { c: 'd', e: 'f' } } }, { allowDots: true });
// 'a.b.c=d&a.b.e=f'





Empty strings and null values will omit the value, but the equals sign (=) remains in place:

assert.equal(qs.stringify({ a: '' }), 'a=');





Key with no values (such as an empty object or array) will return nothing:

assert.equal(qs.stringify({ a: [] }), '');
assert.equal(qs.stringify({ a: {} }), '');
assert.equal(qs.stringify({ a: [{}] }), '');
assert.equal(qs.stringify({ a: { b: []} }), '');
assert.equal(qs.stringify({ a: { b: {}} }), '');





Properties that are set to undefined will be omitted entirely:

assert.equal(qs.stringify({ a: null, b: undefined }), 'a=');





The query string may optionally be prepended with a question mark:

assert.equal(qs.stringify({ a: 'b', c: 'd' }, { addQueryPrefix: true }), '?a=b&c=d');





The delimiter may be overridden with stringify as well:

assert.equal(qs.stringify({ a: 'b', c: 'd' }, { delimiter: ';' }), 'a=b;c=d');





If you only want to override the serialization of Date objects, you can provide a serializeDate option:

var date = new Date(7);
assert.equal(qs.stringify({ a: date }), 'a=1970-01-01T00:00:00.007Z'.replace(/:/g, '%3A'));
assert.equal(
    qs.stringify({ a: date }, { serializeDate: function (d) { return d.getTime(); } }),
    'a=7'
);





You may use the sort option to affect the order of parameter keys:

function alphabeticalSort(a, b) {
    return a.localeCompare(b);
}
assert.equal(qs.stringify({ a: 'c', z: 'y', b : 'f' }, { sort: alphabeticalSort }), 'a=c&b=f&z=y');





Finally, you can use the filter option to restrict which keys will be included in the stringified output.
If you pass a function, it will be called for each key to obtain the replacement value. Otherwise, if you
pass an array, it will be used to select properties and array indices for stringification:

function filterFunc(prefix, value) {
    if (prefix == 'b') {
        // Return an `undefined` value to omit a property.
        return;
    }
    if (prefix == 'e[f]') {
        return value.getTime();
    }
    if (prefix == 'e[g][0]') {
        return value * 2;
    }
    return value;
}
qs.stringify({ a: 'b', c: 'd', e: { f: new Date(123), g: [2] } }, { filter: filterFunc });
// 'a=b&c=d&e[f]=123&e[g][0]=4'
qs.stringify({ a: 'b', c: 'd', e: 'f' }, { filter: ['a', 'e'] });
// 'a=b&e=f'
qs.stringify({ a: ['b', 'c', 'd'], e: 'f' }, { filter: ['a', 0, 2] });
// 'a[0]=b&a[2]=d'







Handling of null values

By default, null values are treated like empty strings:

var withNull = qs.stringify({ a: null, b: '' });
assert.equal(withNull, 'a=&b=');





Parsing does not distinguish between parameters with and without equal signs. Both are converted to empty strings.

var equalsInsensitive = qs.parse('a&b=');
assert.deepEqual(equalsInsensitive, { a: '', b: '' });





To distinguish between null values and empty strings use the strictNullHandling flag. In the result string the null
values have no = sign:

var strictNull = qs.stringify({ a: null, b: '' }, { strictNullHandling: true });
assert.equal(strictNull, 'a&b=');





To parse values without = back to null use the strictNullHandling flag:

var parsedStrictNull = qs.parse('a&b=', { strictNullHandling: true });
assert.deepEqual(parsedStrictNull, { a: null, b: '' });





To completely skip rendering keys with null values, use the skipNulls flag:

var nullsSkipped = qs.stringify({ a: 'b', c: null}, { skipNulls: true });
assert.equal(nullsSkipped, 'a=b');





If you’re communicating with legacy systems, you can switch to iso-8859-1
using the charset option:

var iso = qs.stringify({ æ: 'æ' }, { charset: 'iso-8859-1' });
assert.equal(iso, '%E6=%E6');





Characters that don’t exist in iso-8859-1 will be converted to numeric
entities, similar to what browsers do:

var numeric = qs.stringify({ a: '☺' }, { charset: 'iso-8859-1' });
assert.equal(numeric, 'a=%26%239786%3B');





You can use the charsetSentinel option to announce the character by
including an utf8=✓ parameter with the proper encoding if the checkmark,
similar to what Ruby on Rails and others do when submitting forms.

var sentinel = qs.stringify({ a: '☺' }, { charsetSentinel: true });
assert.equal(sentinel, 'utf8=%E2%9C%93&a=%E2%98%BA');

var isoSentinel = qs.stringify({ a: 'æ' }, { charsetSentinel: true, charset: 'iso-8859-1' });
assert.equal(isoSentinel, 'utf8=%26%2310003%3B&a=%E6');







Dealing with special character sets

By default the encoding and decoding of characters is done in utf-8,
and iso-8859-1 support is also built in via the charset parameter.

If you wish to encode querystrings to a different character set (i.e.
Shift JIS [https://en.wikipedia.org/wiki/Shift_JIS]) you can use the
qs-iconv [https://github.com/martinheidegger/qs-iconv] library:

var encoder = require('qs-iconv/encoder')('shift_jis');
var shiftJISEncoded = qs.stringify({ a: 'こんにちは！' }, { encoder: encoder });
assert.equal(shiftJISEncoded, 'a=%82%B1%82%F1%82%C9%82%BF%82%CD%81I');





This also works for decoding of query strings:

var decoder = require('qs-iconv/decoder')('shift_jis');
var obj = qs.parse('a=%82%B1%82%F1%82%C9%82%BF%82%CD%81I', { decoder: decoder });
assert.deepEqual(obj, { a: 'こんにちは！' });







RFC 3986 and RFC 1738 space encoding

RFC3986 used as default option and encodes ‘ ‘ to %20 which is backward compatible.
In the same time, output can be stringified as per RFC1738 with ‘ ‘ equal to ‘+’.

assert.equal(qs.stringify({ a: 'b c' }), 'a=b%20c');
assert.equal(qs.stringify({ a: 'b c' }, { format : 'RFC3986' }), 'a=b%20c');
assert.equal(qs.stringify({ a: 'b c' }, { format : 'RFC1738' }), 'a=b+c');










          

      

      

    

  

  
    

    Polyfill for Object.setPrototypeOf
    

    
 
  

    
      
          
            
  
Polyfill for Object.setPrototypeOf

[image: ../../../../_images/setprototypeof.svg]NPM Version [https://npmjs.org/package/setprototypeof]
[image: ../../../../_images/setprototypeof1.svg]NPM Downloads [https://npmjs.org/package/setprototypeof]
[image: ../../../../_images/0b6457ddf81eddd37d9b6e1860849464913afa03.svg]js-standard-style [https://github.com/standard/standard]

A simple cross platform implementation to set the prototype of an instianted object.  Supports all modern browsers and at least back to IE8.


Usage:

$ npm install --save setprototypeof





var setPrototypeOf = require('setprototypeof')

var obj = {}
setPrototypeOf(obj, {
  foo: function () {
    return 'bar'
  }
})
obj.foo() // bar





TypeScript is also supported:

import setPrototypeOf = require('setprototypeof')









          

      

      

    

  

  
    

    1.5.0 / 2018-03-27
    

    
 
  

    
      
          
            
  
1.5.0 / 2018-03-27


	Add 103 Early Hints






1.4.0 / 2017-10-20


	Add STATUS_CODES export






1.3.1 / 2016-11-11


	Fix return type in JSDoc






1.3.0 / 2016-05-17


	Add 421 Misdirected Request


	perf: enable strict mode






1.2.1 / 2015-02-01


	Fix message for status 451


	451 Unavailable For Legal Reasons










1.2.0 / 2014-09-28


	Add 208 Already Repored


	Add 226 IM Used


	Add 306 (Unused)


	Add 415 Unable For Legal Reasons


	Add 508 Loop Detected






1.1.1 / 2014-09-24


	Add missing 308 to codes.json






1.1.0 / 2014-09-21


	Add codes.json for universal support






1.0.4 / 2014-08-20


	Package cleanup






1.0.3 / 2014-06-08


	Add 308 to .redirect category






1.0.2 / 2014-03-13


	Add .retry category






1.0.1 / 2014-03-12


	Initial release







          

      

      

    

  

  
    

    Statuses
    

    
 
  

    
      
          
            
  
Statuses

[image: ../../../../_images/statuses.svg]NPM Version [https://npmjs.org/package/statuses]
[image: ../../../../_images/statuses1.svg]NPM Downloads [https://npmjs.org/package/statuses]
[image: ../../../../_images/statuses2.svg]Node.js Version [https://nodejs.org/en/download]
[image: ../../../../_images/statuses3.svg]Build Status [https://travis-ci.org/jshttp/statuses]
[image: ../../../../_images/statuses4.svg]Test Coverage [https://coveralls.io/r/jshttp/statuses?branch=master]

HTTP status utility for node.

This module provides a list of status codes and messages sourced from
a few different projects:


	The IANA Status Code Registry [https://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml]


	The Node.js project [https://nodejs.org/]


	The NGINX project [https://www.nginx.com/]


	The Apache HTTP Server project [https://httpd.apache.org/]





Installation

This is a Node.js [https://nodejs.org/en/] module available through the
npm registry [https://www.npmjs.com/]. Installation is done using the
npm install command [https://docs.npmjs.com/getting-started/installing-npm-packages-locally]:

$ npm install statuses







API

var status = require('statuses')






var code = status(Integer || String)

If Integer or String is a valid HTTP code or status message, then the
appropriate code will be returned. Otherwise, an error will be thrown.

status(403) // => 403
status('403') // => 403
status('forbidden') // => 403
status('Forbidden') // => 403
status(306) // throws, as it's not supported by node.js







status.STATUS_CODES

Returns an object which maps status codes to status messages, in
the same format as the
Node.js http module [https://nodejs.org/dist/latest/docs/api/http.html#http_http_status_codes].



status.codes

Returns an array of all the status codes as Integers.



var msg = status[code]

Map of code to status message. undefined for invalid codes.

status[404] // => 'Not Found'







var code = status[msg]

Map of status message to code. msg can either be title-cased or
lower-cased. undefined for invalid status messages.

status['not found'] // => 404
status['Not Found'] // => 404







status.redirect[code]

Returns true if a status code is a valid redirect status.

status.redirect[200] // => undefined
status.redirect[301] // => true







status.empty[code]

Returns true if a status code expects an empty body.

status.empty[200] // => undefined
status.empty[204] // => true
status.empty[304] // => true







status.retry[code]

Returns true if you should retry the rest.

status.retry[501] // => undefined
status.retry[503] // => true










          

      

      

    

  

  
    

    brace-expansion
    

    
 
  

    
      
          
            
  
brace-expansion

Brace expansion [https://www.gnu.org/software/bash/manual/html_node/Brace-Expansion.html],
as known from sh/bash, in JavaScript.

[image: ../../_images/brace-expansion.svg]build status [http://travis-ci.org/juliangruber/brace-expansion]
[image: ../../_images/brace-expansion1.svg]downloads [https://www.npmjs.org/package/brace-expansion]
[image: ../../_images/brace-expansion2.svg]Greenkeeper badge [https://greenkeeper.io/]

[image: https://ci.testling.com/juliangruber/brace-expansion.png]testling badge [https://ci.testling.com/juliangruber/brace-expansion]


Example

var expand = require('brace-expansion');

expand('file-{a,b,c}.jpg')
// => ['file-a.jpg', 'file-b.jpg', 'file-c.jpg']

expand('-v{,,}')
// => ['-v', '-v', '-v']

expand('file{0..2}.jpg')
// => ['file0.jpg', 'file1.jpg', 'file2.jpg']

expand('file-{a..c}.jpg')
// => ['file-a.jpg', 'file-b.jpg', 'file-c.jpg']

expand('file{2..0}.jpg')
// => ['file2.jpg', 'file1.jpg', 'file0.jpg']

expand('file{0..4..2}.jpg')
// => ['file0.jpg', 'file2.jpg', 'file4.jpg']

expand('file-{a..e..2}.jpg')
// => ['file-a.jpg', 'file-c.jpg', 'file-e.jpg']

expand('file{00..10..5}.jpg')
// => ['file00.jpg', 'file05.jpg', 'file10.jpg']

expand('{{A..C},{a..c}}')
// => ['A', 'B', 'C', 'a', 'b', 'c']

expand('ppp{,config,oe{,conf}}')
// => ['ppp', 'pppconfig', 'pppoe', 'pppoeconf']







API

var expand = require('brace-expansion');






var expanded = expand(str)

Return an array of all possible and valid expansions of str. If none are
found, [str] is returned.

Valid expansions are:

/^(.*,)+(.+)?$/
// {a,b,...}





A comma separated list of options, like {a,b} or {a,{b,c}} or {,a,}.

/^-?\d+\.\.-?\d+(\.\.-?\d+)?$/
// {x..y[..incr]}





A numeric sequence from x to y inclusive, with optional increment.
If x or y start with a leading 0, all the numbers will be padded
to have equal length. Negative numbers and backwards iteration work too.

/^-?\d+\.\.-?\d+(\.\.-?\d+)?$/
// {x..y[..incr]}





An alphabetic sequence from x to y inclusive, with optional increment.
x and y must be exactly one character, and if given, incr must be a
number.

For compatibility reasons, the string ${ is not eligible for brace expansion.




Installation

With npm [https://npmjs.org] do:

npm install brace-expansion







Contributors


	Julian Gruber [https://github.com/juliangruber]


	Isaac Z. Schlueter [https://github.com/isaacs]






Sponsors

This module is proudly supported by my Sponsors [https://github.com/juliangruber/sponsors]!

Do you want to support modules like this to improve their quality, stability and weigh in on new features? Then please consider donating to my Patreon [https://www.patreon.com/juliangruber]. Not sure how much of my modules you’re using? Try feross/thanks [https://github.com/feross/thanks]!



License

(MIT)

Copyright (c) 2013 Julian Gruber <julian@juliangruber.com>

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.





          

      

      

    

  

  
    

    3.1.0 / 2019-01-22
    

    
 
  

    
      
          
            
  
3.1.0 / 2019-01-22


	Add petabyte (pb) support






3.0.0 / 2017-08-31


	Change “kB” to “KB” in format output


	Remove support for Node.js 0.6


	Remove support for ComponentJS






2.5.0 / 2017-03-24


	Add option “unit”






2.4.0 / 2016-06-01


	Add option “unitSeparator”






2.3.0 / 2016-02-15


	Drop partial bytes on all parsed units


	Fix non-finite numbers to .format to return null


	Fix parsing byte string that looks like hex


	perf: hoist regular expressions






2.2.0 / 2015-11-13


	add option “decimalPlaces”


	add option “fixedDecimals”






2.1.0 / 2015-05-21


	add .format export


	add .parse export






2.0.2 / 2015-05-20


	remove map recreation


	remove unnecessary object construction






2.0.1 / 2015-05-07


	fix browserify require


	remove node.extend dependency






2.0.0 / 2015-04-12


	add option “case”


	add option “thousandsSeparator”


	return “null” on invalid parse input


	support proper round-trip: bytes(bytes(num)) === num


	units no longer case sensitive when parsing






1.0.0 / 2014-05-05


	add negative support. fixes #6






0.3.0 / 2014-03-19


	added terabyte support






0.2.1 / 2013-04-01


	add .component






0.2.0 / 2012-10-28


	bytes(200).should.eql(’200b’)






0.1.0 / 2012-07-04


	add bytes to string conversion [yields]







          

      

      

    

  

  
    

    Bytes utility
    

    
 
  

    
      
          
            
  
Bytes utility

[image: ../../_images/bytes.svg]NPM Version [https://npmjs.org/package/bytes]
[image: ../../_images/bytes1.svg]NPM Downloads [https://npmjs.org/package/bytes]
[image: ../../_images/master9.svg]Build Status [https://travis-ci.org/visionmedia/bytes.js]
[image: ../../_images/master10.svg]Test Coverage [https://coveralls.io/r/visionmedia/bytes.js?branch=master]

Utility to parse a string bytes (ex: 1TB) to bytes (1099511627776) and vice-versa.


Installation

This is a Node.js [https://nodejs.org/en/] module available through the
npm registry [https://www.npmjs.com/]. Installation is done using the
npm install command [https://docs.npmjs.com/getting-started/installing-npm-packages-locally]:

$ npm install bytes







Usage

var bytes = require('bytes');






bytes.format(number value, [options]): string｜null

Format the given value in bytes into a string. If the value is negative, it is kept as such. If it is a float, it is
rounded.

Arguments

| Name    | Type     | Description        |
|———|———-|——————–|
| value   | number | Value in bytes     |
| options | Object | Conversion options |

Options

| Property          | Type   | Description                                                                             |
|——————-|——–|—————————————————————————————–|
| decimalPlaces | number｜null | Maximum number of decimal places to include in output. Default value to 2. |
| fixedDecimals | boolean｜null | Whether to always display the maximum number of decimal places. Default value to false |
| thousandsSeparator | string｜null | Example of values: ' ', ',' and .… Default value to ''. |
| unit | string｜null | The unit in which the result will be returned (B/KB/MB/GB/TB). Default value to '' (which means auto detect). |
| unitSeparator | string｜null | Separator to use between number and unit. Default value to ''. |

Returns

| Name    | Type             | Description                                     |
|———|——————|————————————————-|
| results | string｜null | Return null upon error. String value otherwise. |

Example

bytes(1024);
// output: '1KB'

bytes(1000);
// output: '1000B'

bytes(1000, {thousandsSeparator: ' '});
// output: '1 000B'

bytes(1024 * 1.7, {decimalPlaces: 0});
// output: '2KB'

bytes(1024, {unitSeparator: ' '});
// output: '1 KB'







bytes.parse(string｜number value): number｜null

Parse the string value into an integer in bytes. If no unit is given, or value
is a number, it is assumed the value is in bytes.

Supported units and abbreviations are as follows and are case-insensitive:


	b for bytes


	kb for kilobytes


	mb for megabytes


	gb for gigabytes


	tb for terabytes


	pb for petabytes




The units are in powers of two, not ten. This means 1kb = 1024b according to this parser.

Arguments

| Name          | Type   | Description        |
|—————|——–|——————–|
| value   | string｜number | String to parse, or number in bytes.   |

Returns

| Name    | Type        | Description             |
|———|————-|————————-|
| results | number｜null | Return null upon error. Value in bytes otherwise. |

Example

bytes('1KB');
// output: 1024

bytes('1024');
// output: 1024

bytes(1024);
// output: 1KB








License

MIT





          

      

      

    

  

  
    

    camelcase
    

    
 
  

    
      
          
            
  
camelcase [image: ../../_images/camelcase.svg]Build Status [https://travis-ci.org/sindresorhus/camelcase]


Convert a dash/dot/underscore/space separated string to camelCase: foo-bar → fooBar





Install

$ npm install --save camelcase







Usage

var camelCase = require('camelcase');

camelCase('foo-bar');
//=> fooBar

camelCase('foo_bar');
//=> fooBar

camelCase('Foo-Bar');
//=> fooBar

camelCase('--foo.bar');
//=> fooBar

camelCase('__foo__bar__');
//=> fooBar

camelCase('foo bar');
//=> fooBar

console.log(process.argv[3]);
//=> --foo-bar
camelCase(process.argv[3]);
//=> fooBar

camelCase('foo', 'bar');
//=> fooBar

camelCase('__foo__', '--bar');
//=> fooBar







Related

See decamelize [https://github.com/sindresorhus/decamelize] for the inverse.



License

MIT © Sindre Sorhus [http://sindresorhus.com]





          

      

      

    

  

  
    

    Caseless – wrap an object to set and get property with caseless semantics but also preserve caseing.
    

    
 
  

    
      
          
            
  
Caseless – wrap an object to set and get property with caseless semantics but also preserve caseing.

This library is incredibly useful when working with HTTP headers. It allows you to get/set/check for headers in a caseless manner while also preserving the caseing of headers the first time they are set.



Usage

var headers = {}
  , c = caseless(headers)
  ;
c.set('a-Header', 'asdf')
c.get('a-header') === 'asdf'







has(key)

Has takes a name and if it finds a matching header will return that header name with the preserved caseing it was set with.

c.has('a-header') === 'a-Header'







set(key, value[, clobber=true])

Set is fairly straight forward except that if the header exists and clobber is disabled it will add ','+value to the existing header.

c.set('a-Header', 'fdas')
c.set('a-HEADER', 'more', false)
c.get('a-header') === 'fdsa,more'







swap(key)

Swaps the casing of a header with the new one that is passed in.

var headers = {}
  , c = caseless(headers)
  ;
c.set('a-Header', 'fdas')
c.swap('a-HEADER')
c.has('a-header') === 'a-HEADER'
headers === {'a-HEADER': 'fdas'}








          

      

      

    

  

  
    

    center-align
    

    
 
  

    
      
          
            
  
center-align [image: ../../_images/center-align.svg]NPM version [http://badge.fury.io/js/center-align]


Center-align the text in a string.




Install with npm [https://www.npmjs.com/]

$ npm i center-align --save






Usage

var centerAlign = require('center-align');





Example

If used on the following:

Lorem ipsum dolor sit amet,
consectetur adipiscing
elit, sed do eiusmod tempor incididunt
ut labore et dolore
magna aliqua. Ut enim ad minim
veniam, quis





The result would be:

     Lorem ipsum dolor sit amet,
        consectetur adipiscing
elit, sed do eiusmod tempor incididunt
         ut labore et dolore
    magna aliqua. Ut enim ad minim
             veniam, quis







Related projects


	align-text [https://www.npmjs.com/package/align-text]: Align the text in a string. | homepage [https://github.com/jonschlinkert/align-text]


	justified [https://www.npmjs.com/package/justified]: Wrap words to a specified length and justified the text. | homepage [https://github.com/jonschlinkert/justified]


	right-align [https://www.npmjs.com/package/right-align]: Right-align the text in a string. | homepage [https://github.com/jonschlinkert/right-align]


	word-wrap [https://www.npmjs.com/package/word-wrap]: Wrap words to a specified length. | homepage [https://github.com/jonschlinkert/word-wrap]






Running tests

Install dev dependencies:

$ npm i -d && npm test







Contributing

Pull requests and stars are always welcome. For bugs and feature requests, please create an issue [https://github.com/jonschlinkert/center-align/issues/new].



Author

Jon Schlinkert


	github/jonschlinkert [https://github.com/jonschlinkert]


	twitter/jonschlinkert [http://twitter.com/jonschlinkert]






License

Copyright © 2015 Jon Schlinkert
Released under the MIT license.



This file was generated by verb-cli [https://github.com/assemble/verb-cli] on October 27, 2015.





          

      

      

    

  

  
    

    character-parser
    

    
 
  

    
      
          
            
  
character-parser

Parse JavaScript one character at a time to look for snippets in Templates.  This is not a validator, it’s just designed to allow you to have sections of JavaScript delimited by brackets robustly.

[image: ../../_images/master11.svg]Build Status [https://travis-ci.org/ForbesLindesay/character-parser]


Installation

npm install character-parser







Usage

Work out how much depth changes:

var state = parse('foo(arg1, arg2, {\n  foo: [a, b\n');
assert(state.roundDepth === 1);
assert(state.curlyDepth === 1);
assert(state.squareDepth === 1);
parse('    c, d]\n  })', state);
assert(state.squareDepth === 0);
assert(state.curlyDepth === 0);
assert(state.roundDepth === 0);






Bracketed Expressions

Find all the contents of a bracketed expression:

var section = parser.parseMax('foo="(", bar="}") bing bong');
assert(section.start === 0);
assert(section.end === 16);//exclusive end of string
assert(section.src = 'foo="(", bar="}"');


var section = parser.parseMax('{foo="(", bar="}"} bing bong', {start: 1});
assert(section.start === 1);
assert(section.end === 17);//exclusive end of string
assert(section.src = 'foo="(", bar="}"');





The bracketed expression parsing simply parses up to but excluding the first unmatched closed bracket (), }, ]).  It is clever enough to ignore brackets in comments or strings.



Custom Delimited Expressions

Find code up to a custom delimiter:

var section = parser.parseUntil('foo.bar("%>").baz%> bing bong', '%>');
assert(section.start === 0);
assert(section.end === 17);//exclusive end of string
assert(section.src = 'foo.bar("%>").baz');

var section = parser.parseUntil('<%foo.bar("%>").baz%> bing bong', '%>', {start: 2});
assert(section.start === 2);
assert(section.end === 19);//exclusive end of string
assert(section.src = 'foo.bar("%>").baz');





Delimiters are ignored if they are inside strings or comments.




API


parse(str, state = defaultState(), options = {start: 0, end: src.length})

Parse a string starting at the index start, and return the state after parsing that string.

If you want to parse one string in multiple sections you should keep passing the resulting state to the next parse operation.

Returns a State object.



parseMax(src, options = {start: 0})

Parses the source until the first unmatched close bracket (any of ), }, ]).  It returns an object with the structure:

{
  start: 0,//index of first character of string
  end: 13,//index of first character after the end of string
  src: 'source string'
}







parseUntil(src, delimiter, options = {start: 0, includeLineComment: false})

Parses the source until the first occurence of delimiter which is not in a string or a comment.  If includeLineComment is true, it will still count if the delimiter occurs in a line comment, but not in a block comment.  It returns an object with the structure:

{
  start: 0,//index of first character of string
  end: 13,//index of first character after the end of string
  src: 'source string'
}







parseChar(character, state = defaultState())

Parses the single character and returns the state.  See parse for the structure of the returned state object.  N.B. character must be a single character not a multi character string.



defaultState()

Get a default starting state.



isPunctuator(character)

Returns true if character represents punctuation in JavaScript.



isKeyword(name)

Returns true if name is a keyword in JavaScript.




State

A state is an object with the following structure

{
  lineComment: false, //true if inside a line comment
  blockComment: false, //true if inside a block comment

  singleQuote: false, //true if inside a single quoted string
  doubleQuote: false, //true if inside a double quoted string
  regexp:      false, //true if inside a regular expression
  escaped: false, //true if in a string and the last character was an escape character

  roundDepth: 0, //number of un-closed open `(` brackets
  curlyDepth: 0, //number of un-closed open `{` brackets
  squareDepth: 0 //number of un-closed open `[` brackets
}





It also has the following useful methods:


	.isString() returns true if the current location is inside a string.


	.isComment() returns true if the current location is inside a comment.


	isNesting() returns true if the current location is anything but at the top level, i.e. with no nesting.






License

MIT





          

      

      

    

  

  
    

    3.4.28 / 2017-07-14
    

    
 
  

    
      
          
            
  
3.4.28 / 2017-07-14 [https://github.com/jakubpawlowicz/clean-css/compare/v3.4.27...v3.4.28]


	Backports #957 [https://github.com/jakubpawlowicz/clean-css/issues/957] - 0% minification of width property.






3.4.27 / 2017-06-09 [https://github.com/jakubpawlowicz/clean-css/compare/v3.4.26...v3.4.27]


	Fixes #948 [https://github.com/jakubpawlowicz/clean-css/issues/948] - enforces line break before source map comment.






3.4.26 / 2017-05-10 [https://github.com/jakubpawlowicz/clean-css/compare/v3.4.25...v3.4.26]


	Backports #939 [https://github.com/jakubpawlowicz/clean-css/issues/939] - semicolon after @apply at-rule.






3.4.25 / 2017-02-22 [https://github.com/jakubpawlowicz/clean-css/compare/v3.4.24...v3.4.25]


	Fixed issue #897 [https://github.com/jakubpawlowicz/clean-css/issues/897] - tokenization with escaped markers.






3.4.24 / 2017-01-20 [https://github.com/jakubpawlowicz/clean-css/compare/v3.4.23...v3.4.24]


	Fixed issue #859 [https://github.com/jakubpawlowicz/clean-css/issues/859] - avoid -webkit-border-radius optimizations.






3.4.23 / 2016-12-17 [https://github.com/jakubpawlowicz/clean-css/compare/v3.4.22...v3.4.23]


	Fixed issue #844 [https://github.com/jakubpawlowicz/clean-css/issues/844] - regression in property values extraction.






3.4.22 / 2016-12-12 [https://github.com/jakubpawlowicz/clean-css/compare/v3.4.21...v3.4.22]


	Fixed issue #841 [https://github.com/jakubpawlowicz/clean-css/issues/841] - disabled importing and files passed as array.


	Ignores @import at-rules if appearing after any non-@import rules.






3.4.21 / 2016-11-16 [https://github.com/jakubpawlowicz/clean-css/compare/v3.4.20...v3.4.21]


	Fixed issue #821 [https://github.com/jakubpawlowicz/clean-css/issues/821] - reducing non-adjacent rules.


	Fixed issue #830 [https://github.com/jakubpawlowicz/clean-css/issues/830] - reordering border-* properties.


	Fixed issue #833 [https://github.com/jakubpawlowicz/clean-css/issues/833] - moving @media queries.






3.4.20 / 2016-09-26 [https://github.com/jakubpawlowicz/clean-css/compare/v3.4.19...v3.4.20]


	Fixed issue #814 [https://github.com/jakubpawlowicz/clean-css/issues/814] - :selection rule merging.






3.4.19 / 2016-07-25 [https://github.com/jakubpawlowicz/clean-css/compare/v3.4.18...v3.4.19]


	Fixed issue #795 [https://github.com/jakubpawlowicz/clean-css/issues/795] - !important and override compacting.






3.4.18 / 2016-06-15 [https://github.com/jakubpawlowicz/clean-css/compare/v3.4.17...v3.4.18]


	Fixed issue #787 [https://github.com/jakubpawlowicz/clean-css/issues/787] - regression in processing data URIs.






3.4.17 / 2016-06-04 [https://github.com/jakubpawlowicz/clean-css/compare/v3.4.16...v3.4.17]


	Fixed issue #783 [https://github.com/jakubpawlowicz/clean-css/issues/783] - regression in processing data URIs.






3.4.16 / 2016-06-02 [https://github.com/jakubpawlowicz/clean-css/compare/v3.4.15...v3.4.16]


	Fixed issue #781 [https://github.com/jakubpawlowicz/clean-css/issues/781] - regression in override compacting.


	Fixed issue #782 [https://github.com/jakubpawlowicz/clean-css/issues/782] - regression in processing data URIs.






3.4.15 / 2016-06-01 [https://github.com/jakubpawlowicz/clean-css/compare/v3.4.14...v3.4.15]


	Fixed issue #776 [https://github.com/jakubpawlowicz/clean-css/issues/776] - edge case in quoted data URIs.


	Fixed issue #779 [https://github.com/jakubpawlowicz/clean-css/issues/779] - merging background-(position|size).


	Fixed issue #780 [https://github.com/jakubpawlowicz/clean-css/issues/780] - space after inlined variables.






3.4.14 / 2016-05-31 [https://github.com/jakubpawlowicz/clean-css/compare/v3.4.13...v3.4.14]


	Fixed issue #751 [https://github.com/jakubpawlowicz/clean-css/issues/751] - stringifying CSS variables.


	Fixed issue #763 [https://github.com/jakubpawlowicz/clean-css/issues/763] - data URI SVG and quoting.


	Fixed issue #765 [https://github.com/jakubpawlowicz/clean-css/issues/765] - two values of border-radius.


	Fixed issue #768 [https://github.com/jakubpawlowicz/clean-css/issues/768] - invalid border-radius property.






3.4.13 / 2016-05-23 [https://github.com/jakubpawlowicz/clean-css/compare/v3.4.12...v3.4.13]


	Fixed issue #734 [https://github.com/jakubpawlowicz/clean-css/issues/769] - Node.js 6.x support.






3.4.12 / 2016-04-09 [https://github.com/jakubpawlowicz/clean-css/compare/v3.4.11...v3.4.12]


	Fixed issue #734 [https://github.com/jakubpawlowicz/clean-css/issues/734] - --root option edge case.


	Fixed issue #758 [https://github.com/jakubpawlowicz/clean-css/issues/758] - treats empty rule as unmergeable.






3.4.11 / 2016-04-01 [https://github.com/jakubpawlowicz/clean-css/compare/v3.4.10...v3.4.11]


	Fixed issue #738 [https://github.com/jakubpawlowicz/clean-css/issues/738] - edge case in comment processing.


	Fixed issue #741 [https://github.com/jakubpawlowicz/clean-css/issues/741] - HTTP proxy with HTTPS inlining.


	Fixed issue #743 [https://github.com/jakubpawlowicz/clean-css/issues/743] - background shorthand and source maps.


	Fixed issue #745 [https://github.com/jakubpawlowicz/clean-css/issues/745] - matching mixed case !important.






3.4.10 / 2016-02-29 [https://github.com/jakubpawlowicz/clean-css/compare/v3.4.9...v3.4.10]


	Fixed issue #735 [https://github.com/jakubpawlowicz/clean-css/issues/735] - whitespace removal with escaped chars.






3.4.9 / 2016-01-03 [https://github.com/jakubpawlowicz/clean-css/compare/v3.4.8...v3.4.9]


	Sped up merging by body advanced optimization.


	Fixed issue #693 [https://github.com/jakubpawlowicz/clean-css/issues/693] - restructuring edge case.


	Fixed issue #711 [https://github.com/jakubpawlowicz/clean-css/issues/711] - border fuzzy matching.


	Fixed issue #714 [https://github.com/jakubpawlowicz/clean-css/issues/714] - stringifying property level at rules.


	Fixed issue #715 [https://github.com/jakubpawlowicz/clean-css/issues/715] - stack too deep in comment scan.






3.4.8 / 2015-11-13 [https://github.com/jakubpawlowicz/clean-css/compare/v3.4.7...v3.4.8]


	Fixed issue #676 [https://github.com/jakubpawlowicz/clean-css/issues/676] - fuzzy matching unqoted data URIs.






3.4.7 / 2015-11-10 [https://github.com/jakubpawlowicz/clean-css/compare/v3.4.6...v3.4.7]


	Fixed issue #692 [https://github.com/jakubpawlowicz/clean-css/issues/692] - edge case in URL quoting.


	Fixed issue #695 [https://github.com/jakubpawlowicz/clean-css/issues/695] - shorthand overriding edge case.


	Fixed issue #699 [https://github.com/jakubpawlowicz/clean-css/issues/699] - IE9 transparent hack.


	Fixed issue #701 [https://github.com/jakubpawlowicz/clean-css/issues/701] - url quoting with hash arguments.






3.4.6 / 2015-10-14 [https://github.com/jakubpawlowicz/clean-css/compare/v3.4.5...v3.4.6]


	Fixed issue #679 [https://github.com/jakubpawlowicz/clean-css/issues/679] - wrong rebasing of remote URLs.






3.4.5 / 2015-09-28 [https://github.com/jakubpawlowicz/clean-css/compare/v3.4.4...v3.4.5]


	Fixed issue #681 [https://github.com/jakubpawlowicz/clean-css/issues/681] - property inheritance & restructuring.


	Fixed issue #675 [https://github.com/jakubpawlowicz/clean-css/issues/675] - overriding with !important.






3.4.4 / 2015-09-21 [https://github.com/jakubpawlowicz/clean-css/compare/v3.4.3...v3.4.4]


	Fixed issue #626 [https://github.com/jakubpawlowicz/clean-css/issues/626] - edge case in import rebasing.


	Fixed issue #674 [https://github.com/jakubpawlowicz/clean-css/issues/674] - adjacent merging order.






3.4.3 / 2015-09-15 [https://github.com/jakubpawlowicz/clean-css/compare/v3.4.2...v3.4.3]


	Fixed issue #668 [https://github.com/jakubpawlowicz/clean-css/issues/668] - node v4 path.join.


	Fixed issue #669 [https://github.com/jakubpawlowicz/clean-css/issues/669] - adjacent overriding with !important.






3.4.2 / 2015-09-14 [https://github.com/jakubpawlowicz/clean-css/compare/v3.4.1...v3.4.2]


	Fixed issue #598 [https://github.com/jakubpawlowicz/clean-css/issues/598] - restructuring border properties.


	Fixed issue #654 [https://github.com/jakubpawlowicz/clean-css/issues/654] - disables length optimizations.


	Fixed issue #655 [https://github.com/jakubpawlowicz/clean-css/issues/655] - shorthands override merging.


	Fixed issue #660 [https://github.com/jakubpawlowicz/clean-css/issues/660] - !important token overriding.


	Fixed issue #662 [https://github.com/jakubpawlowicz/clean-css/issues/662] - !important selector reducing.


	Fixed issue #667 [https://github.com/jakubpawlowicz/clean-css/issues/667] - rebasing remote URLs.






3.4.1 / 2015-08-27 [https://github.com/jakubpawlowicz/clean-css/compare/v3.4.0...v3.4.1]


	Fixed issue #652 [https://github.com/jakubpawlowicz/clean-css/issues/652] - order of restoring and removing tokens.






3.4.0 / 2015-08-27 [https://github.com/jakubpawlowicz/clean-css/compare/v3.3.10...v3.4.0]


	Adds an option for a fine-grained @import control.


	Adds unit compatibility switches to disable length optimizations.


	Adds inferring proxy settings from HTTP_PROXY environment variable.


	Adds support for Polymer / Web Components special selectors.


	Adds support for Polymer mixins.


	Adds testing source maps in batch mode.


	Unifies wrappers for simple & advanced optimizations.


	Fixed issue #596 [https://github.com/jakubpawlowicz/clean-css/issues/596] - support for !ie IE<8 hack.


	Fixed issue #599 [https://github.com/jakubpawlowicz/clean-css/issues/599] - support for inlined source maps.


	Fixed issue #607 [https://github.com/jakubpawlowicz/clean-css/issues/607] - adds better rule reordering.


	Fixed issue #612 [https://github.com/jakubpawlowicz/clean-css/issues/612] - adds HTTP proxy support.


	Fixed issue #618 [https://github.com/jakubpawlowicz/clean-css/issues/618] - adds safer function validation.


	Fixed issue #625 [https://github.com/jakubpawlowicz/clean-css/issues/625] - adds length unit optimizations.


	Fixed issue #632 [https://github.com/jakubpawlowicz/clean-css/issues/632] - adds disabling remote imports.


	Fixed issue #635 [https://github.com/jakubpawlowicz/clean-css/issues/635] - adds safer 0% optimizations.


	Fixed issue #644 [https://github.com/jakubpawlowicz/clean-css/issues/644] - adds time unit optimizations.


	Fixed issue #645 [https://github.com/jakubpawlowicz/clean-css/issues/645] - adds bottom to top media merging.


	Fixed issue #648 [https://github.com/jakubpawlowicz/clean-css/issues/648] - adds property level at-rule support.






3.3.10 / 2015-08-27 [https://github.com/jakubpawlowicz/clean-css/compare/v3.3.9...v3.3.10]


	Adds better comments + keepBreaks handling.


	Adds better text normalizing in source maps mode.


	Fixes non-adjacent optimizations for source maps.


	Fixes removing unused items.


	Improves outline break up with source maps.


	Refixed issue #629 [https://github.com/jakubpawlowicz/clean-css/issues/629] - source maps & background shorthands.






3.3.9 / 2015-08-09 [https://github.com/jakubpawlowicz/clean-css/compare/v3.3.8...v3.3.9]


	Fixed issue #640 [https://github.com/jakubpawlowicz/clean-css/issues/640] - URI processing regression.






3.3.8 / 2015-08-06 [https://github.com/jakubpawlowicz/clean-css/compare/v3.3.7...v3.3.8]


	Fixed issue #629 [https://github.com/jakubpawlowicz/clean-css/issues/629] - source maps & background shorthands.


	Fixed issue #630 [https://github.com/jakubpawlowicz/clean-css/issues/630] - vendor prefixed flex optimizations.


	Fixed issue #633 [https://github.com/jakubpawlowicz/clean-css/issues/633] - handling data URI with brackets.


	Fixed issue #634 [https://github.com/jakubpawlowicz/clean-css/issues/634] - merging :placeholder selectors.






3.3.7 / 2015-07-29 [https://github.com/jakubpawlowicz/clean-css/compare/v3.3.6...v3.3.7]


	Fixed issue #616 [https://github.com/jakubpawlowicz/clean-css/issues/616] - ordering in restructuring.






3.3.6 / 2015-07-14 [https://github.com/jakubpawlowicz/clean-css/compare/v3.3.5...v3.3.6]


	Fixed issue #620 [https://github.com/jakubpawlowicz/clean-css/issues/620] - bold style in font shorthands.






3.3.5 / 2015-07-01 [https://github.com/jakubpawlowicz/clean-css/compare/v3.3.4...v3.3.5]


	Fixed issue #608 [https://github.com/jakubpawlowicz/clean-css/issues/608] - custom URI protocols handling.






3.3.4 / 2015-06-24 [https://github.com/jakubpawlowicz/clean-css/compare/v3.3.3...v3.3.4]


	Fixed issue #610 [https://github.com/jakubpawlowicz/clean-css/issues/610] - border:inherit restoring.


	Fixed issue #611 [https://github.com/jakubpawlowicz/clean-css/issues/611] - edge case in quote stripping.






3.3.3 / 2015-06-16 [https://github.com/jakubpawlowicz/clean-css/compare/v3.3.2...v3.3.3]


	Fixed issue #603 [https://github.com/jakubpawlowicz/clean-css/issues/603] - IE suffix hack defaults to on.






3.3.2 / 2015-06-14 [https://github.com/jakubpawlowicz/clean-css/compare/v3.3.1...v3.3.2]


	Fixed issue #595 [https://github.com/jakubpawlowicz/clean-css/issues/595] - more relaxed block matching.


	Fixed issue #601 [https://github.com/jakubpawlowicz/clean-css/issues/601] - percentage minifying inside flex.


	Fixed issue #602 [https://github.com/jakubpawlowicz/clean-css/issues/602] - backslash IE hacks after a space.






3.3.1 / 2015-06-02 [https://github.com/jakubpawlowicz/clean-css/compare/v3.3.0...v3.3.1]


	Fixed issue #590 [https://github.com/jakubpawlowicz/clean-css/issues/590] - edge case in @import processing.






3.3.0 / 2015-05-31 [https://github.com/jakubpawlowicz/clean-css/compare/v3.2.11...v3.3.0]


	Cleans up url rebase code getting rid of unnecessary state.


	Cleans up tokenizer code getting rid of unnecessary state.


	Moves source maps tracker into lib/source-maps/track.


	Moves tokenizer code into lib/tokenizer.


	Moves URL scanner into lib/urls/reduce (was named incorrectly before).


	Moves URL rebasing & rewriting into lib/urls.


	Fixed issue #375 [https://github.com/jakubpawlowicz/clean-css/issues/375] - unit compatibility switches.


	Fixed issue #436 [https://github.com/jakubpawlowicz/clean-css/issues/436] - refactors URI rewriting.


	Fixed issue #448 [https://github.com/jakubpawlowicz/clean-css/issues/448] - rebasing no protocol URIs.


	Fixed issue #517 [https://github.com/jakubpawlowicz/clean-css/issues/517] - turning off color optimizations.


	Fixed issue #542 [https://github.com/jakubpawlowicz/clean-css/issues/542] - space after closing brace in IE.


	Fixed issue #562 [https://github.com/jakubpawlowicz/clean-css/issues/562] - optimizing invalid color values.


	Fixed issue #563 [https://github.com/jakubpawlowicz/clean-css/issues/563] - background:inherit restoring.


	Fixed issue #570 [https://github.com/jakubpawlowicz/clean-css/issues/570] - rebasing “no-url()” imports.


	Fixed issue #574 [https://github.com/jakubpawlowicz/clean-css/issues/574] - rewriting internal URLs.


	Fixed issue #575 [https://github.com/jakubpawlowicz/clean-css/issues/575] - missing directory as a target.


	Fixed issue #577 [https://github.com/jakubpawlowicz/clean-css/issues/577] - background-clip into shorthand.


	Fixed issue #579 [https://github.com/jakubpawlowicz/clean-css/issues/579] - background-origin into shorthand.


	Fixed issue #580 [https://github.com/jakubpawlowicz/clean-css/issues/580] - mixed @import processing.


	Fixed issue #582 [https://github.com/jakubpawlowicz/clean-css/issues/582] - overriding with prefixed values.


	Fixed issue #583 [https://github.com/jakubpawlowicz/clean-css/issues/583] - URL quoting for SVG data.


	Fixed issue #587 [https://github.com/jakubpawlowicz/clean-css/issues/587] - too aggressive border reordering.






3.2.11 / 2015-05-31 [https://github.com/jakubpawlowicz/clean-css/compare/v3.2.10...v3.2.11]


	Fixed issue #563 [https://github.com/jakubpawlowicz/clean-css/issues/563] - background:inherit restoring.


	Fixed issue #582 [https://github.com/jakubpawlowicz/clean-css/issues/582] - overriding with prefixed values.


	Fixed issue #583 [https://github.com/jakubpawlowicz/clean-css/issues/583] - URL quoting for SVG data.


	Fixed issue #587 [https://github.com/jakubpawlowicz/clean-css/issues/587] - too aggressive border reordering.






3.2.10 / 2015-05-14 [https://github.com/jakubpawlowicz/clean-css/compare/v3.2.9...v3.2.10]


	Fixed issue #572 [https://github.com/jakubpawlowicz/clean-css/issues/572] - empty elements removal.






3.2.9 / 2015-05-08 [https://github.com/jakubpawlowicz/clean-css/compare/v3.2.8...v3.2.9]


	Fixed issue #567 [https://github.com/jakubpawlowicz/clean-css/issues/567] - merging colors as functions.






3.2.8 / 2015-05-04 [https://github.com/jakubpawlowicz/clean-css/compare/v3.2.7...v3.2.8]


	Fixed issue #561 [https://github.com/jakubpawlowicz/clean-css/issues/561] - restructuring special selectors.






3.2.7 / 2015-05-03 [https://github.com/jakubpawlowicz/clean-css/compare/v3.2.6...v3.2.7]


	Fixed issue #551 [https://github.com/jakubpawlowicz/clean-css/issues/551] - edge case in restructuring.


	Fixed issue #553 [https://github.com/jakubpawlowicz/clean-css/issues/553] - another style of SVG fallback.


	Fixed issue #558 [https://github.com/jakubpawlowicz/clean-css/issues/558] - units in same selector merging.






3.2.6 / 2015-04-28 [https://github.com/jakubpawlowicz/clean-css/compare/v3.2.5...v3.2.6]


	Fixed issue #550 [https://github.com/jakubpawlowicz/clean-css/issues/550] - proper contentSources tracking.


	Fixed issue #556 [https://github.com/jakubpawlowicz/clean-css/issues/556] - regression in IE backslash hacks.






3.2.5 / 2015-04-25 [https://github.com/jakubpawlowicz/clean-css/compare/v3.2.4...v3.2.5]


	Fixed issue #543 [https://github.com/jakubpawlowicz/clean-css/issues/543] - better “comment in body” handling.


	Fixed issue #548 [https://github.com/jakubpawlowicz/clean-css/issues/548] - regression in font minifying.


	Fixed issue #549 [https://github.com/jakubpawlowicz/clean-css/issues/549] - special comments in source maps.






3.2.4 / 2015-04-24 [https://github.com/jakubpawlowicz/clean-css/compare/v3.2.3...v3.2.4]


	Fixed issue #544 [https://github.com/jakubpawlowicz/clean-css/issues/544] - regression in same value merging.


	Fixed issue #546 [https://github.com/jakubpawlowicz/clean-css/issues/546] - IE<11 calc() issue.






3.2.3 / 2015-04-22 [https://github.com/jakubpawlowicz/clean-css/compare/v3.2.2...v3.2.3]


	Fixed issue #541 [https://github.com/jakubpawlowicz/clean-css/issues/541] - outline-style:auto in shorthand.






3.2.2 / 2015-04-21 [https://github.com/jakubpawlowicz/clean-css/compare/v3.2.1...v3.2.2]


	Fixed issue #537 [https://github.com/jakubpawlowicz/clean-css/issues/537] - regression in simple optimizer.






3.2.1 / 2015-04-20 [https://github.com/jakubpawlowicz/clean-css/compare/v3.2.0...v3.2.1]


	Fixed issue #534 [https://github.com/jakubpawlowicz/clean-css/issues/534] - wrong @font-face stringifying.






3.2.0 / 2015-04-19 [https://github.com/jakubpawlowicz/clean-css/compare/v3.1.9...v3.2.0]


	Bumps commander to 2.8.x.


	Fixes remote asset rebasing when passing data as a hash.


	Improves path resolution inside source maps.


	Makes root option implicitely default to process.cwd().


	Fixed issue #371 [https://github.com/jakubpawlowicz/clean-css/issues/371] - background fallback with none.


	Fixed issue #376 [https://github.com/jakubpawlowicz/clean-css/issues/376] - option to disable 0[unit] -> 0.


	Fixed issue #396 [https://github.com/jakubpawlowicz/clean-css/issues/396] - better input source maps tracking.


	Fixed issue #397 [https://github.com/jakubpawlowicz/clean-css/issues/397] - support for source map sources.


	Fixed issue #399 [https://github.com/jakubpawlowicz/clean-css/issues/399] - support compacting with source maps.


	Fixed issue #429 [https://github.com/jakubpawlowicz/clean-css/issues/429] - unifies data tokenization.


	Fixed issue #446 [https://github.com/jakubpawlowicz/clean-css/issues/446] - list-style fuzzy matching.


	Fixed issue #468 [https://github.com/jakubpawlowicz/clean-css/issues/468] - bumps source-map to 0.4.x.


	Fixed issue #480 [https://github.com/jakubpawlowicz/clean-css/issues/480] - extracting uppercase property names.


	Fixed issue #487 [https://github.com/jakubpawlowicz/clean-css/issues/487] - source map paths under Windows.


	Fixed issue #490 [https://github.com/jakubpawlowicz/clean-css/issues/490] - vendor prefixed multivalue background.


	Fixed issue #500 [https://github.com/jakubpawlowicz/clean-css/issues/500] - merging duplicate adjacent properties.


	Fixed issue #504 [https://github.com/jakubpawlowicz/clean-css/issues/504] - keeping url() quotes.


	Fixed issue #507 [https://github.com/jakubpawlowicz/clean-css/issues/507] - merging longhands into many shorthands.


	Fixed issue #508 [https://github.com/jakubpawlowicz/clean-css/issues/508] - removing duplicate media queries.


	Fixed issue #521 [https://github.com/jakubpawlowicz/clean-css/issues/521] - unit optimizations inside calc().


	Fixed issue #524 [https://github.com/jakubpawlowicz/clean-css/issues/524] - timeouts in @import inlining.


	Fixed issue #526 [https://github.com/jakubpawlowicz/clean-css/issues/526] - shorthand overriding into a function.


	Fixed issue #528 [https://github.com/jakubpawlowicz/clean-css/issues/528] - better support for IE<9 hacks.


	Fixed issue #529 [https://github.com/jakubpawlowicz/clean-css/issues/529] - wrong font weight minification.






3.1.9 / 2015-04-04 [https://github.com/jakubpawlowicz/clean-css/compare/v3.1.8...v3.1.9]


	Fixes issue #511 [https://github.com/jakubpawlowicz/clean-css/issues/511] - ) advanced processing.






3.1.8 / 2015-03-17 [https://github.com/jakubpawlowicz/clean-css/compare/v3.1.7...v3.1.8]


	Fixes issue #498 [https://github.com/jakubpawlowicz/clean-css/issues/498] - reordering and flexbox.


	Fixes issue #499 [https://github.com/jakubpawlowicz/clean-css/issues/499] - too aggressive - removal.






3.1.7 / 2015-03-16 [https://github.com/jakubpawlowicz/clean-css/compare/v3.1.6...v3.1.7]


	Backports fix to #480 [https://github.com/jakubpawlowicz/clean-css/issues/480] - reordering and uppercase properties.


	Fixes issue #496 [https://github.com/jakubpawlowicz/clean-css/issues/496] - space after bracket removal.






3.1.6 / 2015-03-12 [https://github.com/jakubpawlowicz/clean-css/compare/v3.1.5...v3.1.6]


	Fixes issue #489 [https://github.com/jakubpawlowicz/clean-css/issues/489] - AlphaImageLoader IE filter.






3.1.5 / 2015-03-06 [https://github.com/jakubpawlowicz/clean-css/compare/v3.1.4...v3.1.5]


	Fixes issue #483 [https://github.com/jakubpawlowicz/clean-css/issues/483] - property order in restructuring.






3.1.4 / 2015-03-04 [https://github.com/jakubpawlowicz/clean-css/compare/v3.1.3...v3.1.4]


	Fixes issue #472 [https://github.com/jakubpawlowicz/clean-css/issues/472] - broken function minification.


	Fixes issue #477 [https://github.com/jakubpawlowicz/clean-css/issues/477] - @imports order in restructuring.


	Fixes issue #478 [https://github.com/jakubpawlowicz/clean-css/issues/478] - ultimate fix to brace whitespace.






3.1.3 / 2015-03-03 [https://github.com/jakubpawlowicz/clean-css/compare/v3.1.2...v3.1.3]


	Fixes issue #464 [https://github.com/jakubpawlowicz/clean-css/issues/464] - data URI with quoted braces.


	Fixes issue #475 [https://github.com/jakubpawlowicz/clean-css/issues/475] - whitespace after closing brace.






3.1.2 / 2015-03-01 [https://github.com/jakubpawlowicz/clean-css/compare/v3.1.1...v3.1.2]


	Refixed issue #471 [https://github.com/jakubpawlowicz/clean-css/issues/471] - correct order after restructuring.


	Fixes issue #466 [https://github.com/jakubpawlowicz/clean-css/issues/466] - rebuilding background shorthand.


	Fixes issue #462 [https://github.com/jakubpawlowicz/clean-css/issues/462] - escaped apostrophes in selectors.






3.1.1 / 2015-02-27 [https://github.com/jakubpawlowicz/clean-css/compare/v3.1.0...v3.1.1]


	Fixed issue #469 [https://github.com/jakubpawlowicz/clean-css/issues/469] - extracting broken property.


	Fixed issue #470 [https://github.com/jakubpawlowicz/clean-css/issues/470] - negative padding removal.


	Fixed issue #471 [https://github.com/jakubpawlowicz/clean-css/issues/471] - correct order after restructuring.






3.1.0 / 2015-02-26 [https://github.com/jakubpawlowicz/clean-css/compare/v3.0.10...v3.1.0]


	Adds 0deg to 0 minification where possible.


	Adds better non-adjacent selector merging when body is the same.


	Adds official support for node.js 0.12.


	Adds official support for io.js 1.0.


	Adds restructuring optimizations to reorganize selectors, which vastly improves minification.


	Fixed issue #158 [https://github.com/jakubpawlowicz/clean-css/issues/158] - adds body-based selectors reduction.


	Fixed issue #182 [https://github.com/jakubpawlowicz/clean-css/issues/182] - removing space after closing brace.


	Fixed issue #204 [https://github.com/jakubpawlowicz/clean-css/issues/204] - @media merging.


	Fixed issue #351 [https://github.com/jakubpawlowicz/clean-css/issues/351] - remote @imports after content.


	Fixed issue #357 [https://github.com/jakubpawlowicz/clean-css/issues/357] - non-standard but valid URLs.


	Fixed issue #416 [https://github.com/jakubpawlowicz/clean-css/issues/416] - accepts hash as minify argument.


	Fixed issue #419 [https://github.com/jakubpawlowicz/clean-css/issues/419] - multiple input source maps.


	Fixed issue #435 [https://github.com/jakubpawlowicz/clean-css/issues/435] - background-clip in shorthand.


	Fixed issue #439 [https://github.com/jakubpawlowicz/clean-css/issues/439] - background-origin in shorthand.


	Fixed issue #442 [https://github.com/jakubpawlowicz/clean-css/issues/442] - space before adjacent nav.


	Fixed issue #445 [https://github.com/jakubpawlowicz/clean-css/issues/445] - regression issue in url processor.


	Fixed issue #449 [https://github.com/jakubpawlowicz/clean-css/issues/449] - warns of missing close braces.


	Fixed issue #463 [https://github.com/jakubpawlowicz/clean-css/issues/463] - relative remote @import URLs.






3.0.10 / 2015-02-07 [https://github.com/jakubpawlowicz/clean-css/compare/v3.0.9...v3.0.10]


	Fixed issue #453 [https://github.com/jakubpawlowicz/clean-css/issues/453] - double background-repeat.


	Fixed issue #455 [https://github.com/jakubpawlowicz/clean-css/issues/455] - property extracting regression.






3.0.9 / 2015-02-04 [https://github.com/jakubpawlowicz/clean-css/compare/v3.0.8...v3.0.9]


	Fixed issue #452 [https://github.com/jakubpawlowicz/clean-css/issues/452] - regression in advanced merging.






3.0.8 / 2015-01-31 [https://github.com/jakubpawlowicz/clean-css/compare/v3.0.7...v3.0.8]


	Fixed issue #447 [https://github.com/jakubpawlowicz/clean-css/issues/447] - background-color in shorthands.


	Fixed issue #450 [https://github.com/jakubpawlowicz/clean-css/issues/450] - name to hex color converting.






3.0.7 / 2015-01-22 [https://github.com/jakubpawlowicz/clean-css/compare/v3.0.6...v3.0.7]


	Fixed issue #441 [https://github.com/jakubpawlowicz/clean-css/issues/441] - hex to name color converting.






3.0.6 / 2015-01-20 [https://github.com/jakubpawlowicz/clean-css/compare/v3.0.5...v3.0.6]


	Refixed issue #414 [https://github.com/jakubpawlowicz/clean-css/issues/414] - source maps position fallback.






3.0.5 / 2015-01-18 [https://github.com/jakubpawlowicz/clean-css/compare/v3.0.4...v3.0.5]


	Fixed issue #414 [https://github.com/jakubpawlowicz/clean-css/issues/414] - source maps position fallback.


	Fixed issue #433 [https://github.com/jakubpawlowicz/clean-css/issues/433] - meging !important in shorthands.






3.0.4 / 2015-01-11 [https://github.com/jakubpawlowicz/clean-css/compare/v3.0.3...v3.0.4]


	Fixed issue #314 [https://github.com/jakubpawlowicz/clean-css/issues/314] - spaces inside calc.






3.0.3 / 2015-01-07 [https://github.com/jakubpawlowicz/clean-css/compare/v3.0.2...v3.0.3]


	Just a version bump as npm incorrectly things 2.2.23 is the latest one.






3.0.2 / 2015-01-04 [https://github.com/jakubpawlowicz/clean-css/compare/v3.0.1...v3.0.2]


	Fixed issue #422 [https://github.com/jakubpawlowicz/clean-css/issues/422] - handling calc as a unit.






3.0.1 / 2014-12-19 [https://github.com/jakubpawlowicz/clean-css/compare/v3.0.0...v3.0.1]


	Fixed issue #410 [https://github.com/jakubpawlowicz/clean-css/issues/410] - advanced merging and comments.


	Fixed issue #411 [https://github.com/jakubpawlowicz/clean-css/issues/411] - properties and important comments.






3.0.0 / 2014-12-18 [https://github.com/jakubpawlowicz/clean-css/compare/v2.2.22...v3.0.0]


	Adds more granular control over compatibility settings.


	Adds support for @counter-style at-rule.


	Adds --source-map/sourceMap switch for building input’s source map.


	Adds --skip-shorthand-compacting/shorthandComacting option for disabling shorthand compacting.


	Allows target option to be a path to a folder instead of a file.


	Allows disabling rounding precision. By @superlukas [https://github.com/superlukas].


	Breaks 2.x compatibility for using CleanCSS as a function.


	Changes minify method output to handle multiple outputs.


	Reworks minification to tokenize first then minify.
See changes [https://github.com/jakubpawlowicz/clean-css/compare/b06f37d...dd8c14a].


	Removes support for node.js 0.8.x.


	Renames noAdvanced option into advanced.


	Renames noAggressiveMerging option into aggressiveMerging.


	Renames noRebase option into rebase.


	Speeds up advanced processing by shortening optimize loop.


	Fixed issue #125 [https://github.com/jakubpawlowicz/clean-css/issues/125] - source maps!


	Fixed issue #344 [https://github.com/jakubpawlowicz/clean-css/issues/344] - merging background-size into shorthand.


	Fixed issue #352 [https://github.com/jakubpawlowicz/clean-css/issues/352] - honors rebasing in imported stylesheets.


	Fixed issue #360 [https://github.com/jakubpawlowicz/clean-css/issues/360] - adds 7 extra CSS colors.


	Fixed issue #363 [https://github.com/jakubpawlowicz/clean-css/issues/363] - rem units overriding px.


	Fixed issue #373 [https://github.com/jakubpawlowicz/clean-css/issues/373] - proper background shorthand merging.


	Fixed issue #395 [https://github.com/jakubpawlowicz/clean-css/issues/395] - unescaped brackets in data URIs.


	Fixed issue #398 [https://github.com/jakubpawlowicz/clean-css/issues/398] - restoring important comments.


	Fixed issue #400 [https://github.com/jakubpawlowicz/clean-css/issues/400] - API to accept an array of filenames.


	Fixed issue #403 [https://github.com/jakubpawlowicz/clean-css/issues/403] - tracking input files in source maps.


	Fixed issue #404 [https://github.com/jakubpawlowicz/clean-css/issues/404] - no state sharing in API.


	Fixed issue #405 [https://github.com/jakubpawlowicz/clean-css/issues/405] - disables default background-size merging.


	Refixed issue #304 [https://github.com/jakubpawlowicz/clean-css/issues/304] - background-position merging.






2.2.22 / 2014-12-13 [https://github.com/jakubpawlowicz/clean-css/compare/v2.2.21...v2.2.22]


	Backports fix to issue #304 [https://github.com/jakubpawlowicz/clean-css/issues/304] - background-position merging.






2.2.21 / 2014-12-10 [https://github.com/jakubpawlowicz/clean-css/compare/v2.2.20...v2.2.21]


	Backports fix to issue #373 [https://github.com/jakubpawlowicz/clean-css/issues/373] - background shorthand merging.






2.2.20 / 2014-12-02 [https://github.com/jakubpawlowicz/clean-css/compare/v2.2.19...v2.2.20]


	Backports fix to issue #390 [https://github.com/jakubpawlowicz/clean-css/issues/390] - pseudo-class merging.






2.2.19 / 2014-11-20 [https://github.com/jakubpawlowicz/clean-css/compare/v2.2.18...v2.2.19]


	Fixed issue #385 [https://github.com/jakubpawlowicz/clean-css/issues/385] - edge cases in processing cut off data.






2.2.18 / 2014-11-17 [https://github.com/jakubpawlowicz/clean-css/compare/v2.2.17...v2.2.18]


	Fixed issue #383 [https://github.com/jakubpawlowicz/clean-css/issues/383] - rounding fractions once again.






2.2.17 / 2014-11-09 [https://github.com/jakubpawlowicz/clean-css/compare/v2.2.16...v2.2.17]


	Fixed issue #380 [https://github.com/jakubpawlowicz/clean-css/issues/380] - rounding fractions to a whole number.






2.2.16 / 2014-09-16 [https://github.com/jakubpawlowicz/clean-css/compare/v2.2.15...v2.2.16]


	Fixed issue #359 [https://github.com/jakubpawlowicz/clean-css/issues/359] - handling escaped double backslash.


	Fixed issue #358 [https://github.com/jakubpawlowicz/clean-css/issues/358] - property merging in compatibility mode.


	Fixed issue #356 [https://github.com/jakubpawlowicz/clean-css/issues/356] - preserving *+html hack.


	Fixed issue #354 [https://github.com/jakubpawlowicz/clean-css/issues/354] - !important overriding in shorthands.






2.2.15 / 2014-09-01 [https://github.com/jakubpawlowicz/clean-css/compare/v2.2.14...v2.2.15]


	Fixed issue #343 [https://github.com/jakubpawlowicz/clean-css/issues/343] - too aggressive rgba/hsla minification.


	Fixed issue #345 [https://github.com/jakubpawlowicz/clean-css/issues/345] - URL rebasing for document relative ones.


	Fixed issue #346 [https://github.com/jakubpawlowicz/clean-css/issues/346] - overriding !important by !important.


	Fixed issue #350 [https://github.com/jakubpawlowicz/clean-css/issues/350] - edge cases in @import processing.






2.2.14 / 2014-08-25 [https://github.com/jakubpawlowicz/clean-css/compare/v2.2.13...v2.2.14]


	Makes multival operations idempotent.


	Fixed issue #339 [https://github.com/jakubpawlowicz/clean-css/issues/339] - skips invalid properties.


	Fixed issue #341 [https://github.com/jakubpawlowicz/clean-css/issues/341] - ensure output is shorter than input.






2.2.13 / 2014-08-12 [https://github.com/jakubpawlowicz/clean-css/compare/v2.2.12...v2.2.13]


	Fixed issue #337 [https://github.com/jakubpawlowicz/clean-css/issues/337] - handling component importance.






2.2.12 / 2014-08-02 [https://github.com/jakubpawlowicz/clean-css/compare/v2.2.11...v2.2.12]


	Fixed issue with tokenizer removing first selector after an unknown @ rule.


	Fixed issue #329 [https://github.com/jakubpawlowicz/clean-css/issues/329] - font shorthands incorrectly processed.


	Fixed issue #332 [https://github.com/jakubpawlowicz/clean-css/issues/332] - background shorthand with colors.


	Refixed issue #325 [https://github.com/jakubpawlowicz/clean-css/issues/325] - invalid charset declarations.






2.2.11 / 2014-07-28 [https://github.com/jakubpawlowicz/clean-css/compare/v2.2.10...v2.2.11]


	Fixed issue #326 [https://github.com/jakubpawlowicz/clean-css/issues/326] - background-size regression.






2.2.10 / 2014-07-27 [https://github.com/jakubpawlowicz/clean-css/compare/v2.2.9...v2.2.10]


	Improved performance of advanced mode validators.


	Fixed issue #307 [https://github.com/jakubpawlowicz/clean-css/issues/307] - background-color in multiple backgrounds.


	Fixed issue #322 [https://github.com/jakubpawlowicz/clean-css/issues/322] - adds background-size support.


	Fixed issue #323 [https://github.com/jakubpawlowicz/clean-css/issues/323] - stripping variable references.


	Fixed issue #325 [https://github.com/jakubpawlowicz/clean-css/issues/325] - removing invalid @charset declarations.






2.2.9 / 2014-07-23 [https://github.com/jakubpawlowicz/clean-css/compare/v2.2.8...v2.2.9]


	Adds background normalization according to W3C spec.


	Fixed issue #316 [https://github.com/jakubpawlowicz/clean-css/issues/316] - incorrect background processing.






2.2.8 / 2014-07-14 [https://github.com/jakubpawlowicz/clean-css/compare/v2.2.7...v2.2.8]


	Fixed issue #313 [https://github.com/jakubpawlowicz/clean-css/issues/313] - processing comment marks in URLs.


	Fixed issue #315 [https://github.com/jakubpawlowicz/clean-css/issues/315] - rgba/hsla -> transparent in gradients.






2.2.7 / 2014-07-10 [https://github.com/jakubpawlowicz/clean-css/compare/v2.2.6...v2.2.7]


	Fixed issue #304 [https://github.com/jakubpawlowicz/clean-css/issues/304] - merging multiple backgrounds.


	Fixed issue #312 [https://github.com/jakubpawlowicz/clean-css/issues/312] - merging with mixed repeat.






2.2.6 / 2014-07-05 [https://github.com/jakubpawlowicz/clean-css/compare/v2.2.5...v2.2.6]


	Adds faster quote matching in QuoteScanner.


	Improves QuoteScanner to handle comments correctly.


	Fixed issue #308 [https://github.com/jakubpawlowicz/clean-css/issues/308] - parsing comments in quoted URLs.


	Fixed issue #311 [https://github.com/jakubpawlowicz/clean-css/issues/311] - leading/trailing decimal points.






2.2.5 / 2014-06-29 [https://github.com/jakubpawlowicz/clean-css/compare/v2.2.4...v2.2.5]


	Adds removing extra spaces around / in border-radius.


	Adds replacing same horizontal & vertical value in border-radius.


	Fixed issue #305 [https://github.com/jakubpawlowicz/clean-css/issues/305] - allows width keywords in border-width.






2.2.4 / 2014-06-27 [https://github.com/jakubpawlowicz/clean-css/compare/v2.2.3...v2.2.4]


	Fixed issue #301 [https://github.com/jakubpawlowicz/clean-css/issues/301] - proper border-radius processing.


	Fixed issue #303 [https://github.com/jakubpawlowicz/clean-css/issues/303] - correctly preserves viewport units.






2.2.3 / 2014-06-24 [https://github.com/jakubpawlowicz/clean-css/compare/v2.2.2...v2.2.3]


	Fixed issue #302 [https://github.com/jakubpawlowicz/clean-css/issues/302] - handling of outline-style: auto.






2.2.2 / 2014-06-18 [https://github.com/jakubpawlowicz/clean-css/compare/v2.2.1...v2.2.2]


	Fixed issue #297 [https://github.com/jakubpawlowicz/clean-css/issues/297] - box-shadow zeros minification.






2.2.1 / 2014-06-14 [https://github.com/jakubpawlowicz/clean-css/compare/v2.2.0...v2.2.1]


	Fixes new property optimizer for ‘none’ values.


	Fixed issue #294 [https://github.com/jakubpawlowicz/clean-css/issues/294] - space after rgba/hsla in IE<=11.






2.2.0 / 2014-06-11 [https://github.com/jakubpawlowicz/clean-css/compare/v2.1.8...v2.2.0]


	Adds a better algorithm for quotation marks’ removal.


	Adds a better non-adjacent optimizer compatible with the upcoming new property optimizer.


	Adds minifying remote files directly from CLI.


	Adds --rounding-precision to control rounding precision.


	Moves quotation matching into a QuoteScanner class.


	Adds npm run browserify for creating embeddable version of clean-css.


	Fixed list-style-* advanced processing.


	Fixed issue #134 [https://github.com/jakubpawlowicz/clean-css/issues/134] - merges properties into shorthand form.


	Fixed issue #164 [https://github.com/jakubpawlowicz/clean-css/issues/164] - removes default values if not needed.


	Fixed issue #168 [https://github.com/jakubpawlowicz/clean-css/issues/168] - adds better property merging algorithm.


	Fixed issue #173 [https://github.com/jakubpawlowicz/clean-css/issues/173] - merges same properties if grouped.


	Fixed issue #184 [https://github.com/jakubpawlowicz/clean-css/issues/184] - uses !important for optimization opportunities.


	Fixed issue #190 [https://github.com/jakubpawlowicz/clean-css/issues/190] - uses shorthand to override another shorthand.


	Fixed issue #197 [https://github.com/jakubpawlowicz/clean-css/issues/197] - adds borders merging by understandability.


	Fixed issue #210 [https://github.com/jakubpawlowicz/clean-css/issues/210] - adds temporary workaround for aggressive merging.


	Fixed issue #246 [https://github.com/jakubpawlowicz/clean-css/issues/246] - removes IE hacks when not in compatibility mode.


	Fixed issue #247 [https://github.com/jakubpawlowicz/clean-css/issues/247] - removes deprecated selectorsMergeMode switch.


	Refixed issue #250 [https://github.com/jakubpawlowicz/clean-css/issues/250] - based on new quotation marks removal.


	Fixed issue #257 [https://github.com/jakubpawlowicz/clean-css/issues/257] - turns rgba/hsla to transparent if possible.


	Fixed issue #265 [https://github.com/jakubpawlowicz/clean-css/issues/265] - adds support for multiple input files.


	Fixed issue #275 [https://github.com/jakubpawlowicz/clean-css/issues/275] - handling transform properties.


	Fixed issue #276 [https://github.com/jakubpawlowicz/clean-css/issues/276] - corrects unicode handling.


	Fixed issue #288 [https://github.com/jakubpawlowicz/clean-css/issues/288] - adds smarter expression parsing.


	Fixed issue #293 [https://github.com/jakubpawlowicz/clean-css/issues/293] - handles escaped @ symbols in class names and IDs.






2.1.8 / 2014-03-28 [https://github.com/jakubpawlowicz/clean-css/compare/v2.1.7...v2.1.8]


	Fixed issue #267 [https://github.com/jakubpawlowicz/clean-css/issues/267] - incorrect non-adjacent selector merging.






2.1.7 / 2014-03-24 [https://github.com/jakubpawlowicz/clean-css/compare/v2.1.6...v2.1.7]


	Fixed issue #264 [https://github.com/jakubpawlowicz/clean-css/issues/264] - @import statements inside comments.






2.1.6 / 2014-03-10 [https://github.com/jakubpawlowicz/clean-css/compare/v2.1.5...v2.1.6]


	Fixed issue #258 [https://github.com/jakubpawlowicz/clean-css/issues/258] - wrong @import handling in EmptyRemoval.






2.1.5 / 2014-03-07 [https://github.com/jakubpawlowicz/clean-css/compare/v2.1.4...v2.1.5]


	Fixed issue #255 [https://github.com/jakubpawlowicz/clean-css/issues/255] - incorrect processing of a trailing -0.






2.1.4 / 2014-03-01 [https://github.com/jakubpawlowicz/clean-css/compare/v2.1.3...v2.1.4]


	Fixed issue #250 [https://github.com/jakubpawlowicz/clean-css/issues/250] - correctly handle JSON data in quotations.






2.1.3 / 2014-02-26 [https://github.com/jakubpawlowicz/clean-css/compare/v2.1.2...v2.1.3]


	Fixed issue #248 [https://github.com/jakubpawlowicz/clean-css/issues/248] - incorrect merging for vendor selectors.






2.1.2 / 2014-02-25 [https://github.com/jakubpawlowicz/clean-css/compare/v2.1.1...v2.1.2]


	Fixed issue #245 [https://github.com/jakubpawlowicz/clean-css/issues/245] - incorrect handling of backslash IE hack.






2.1.1 / 2014-02-18 [https://github.com/jakubpawlowicz/clean-css/compare/v2.1.0...v2.1.1]


	Adds faster selectors processing in advanced optimizer.


	Fixed issue #241 [https://github.com/jakubpawlowicz/clean-css/issues/241] - incorrect handling of :not() selectors.






2.1.0 / 2014-02-13 [https://github.com/jakubpawlowicz/clean-css/compare/v2.0.8...v2.1.0]


	Adds an optional callback to minify method.


	Deprecates --selectors-merge-mode / selectorsMergeMode in favor to --compatibility / compatibility.


	Fixes debug mode stats for stylesheets using @import statements.


	Skips empty removal if advanced processing is enabled.


	Fixed issue #85 [https://github.com/jakubpawlowicz/clean-css/issues/85] - resolving protocol @imports.


	Fixed issue #160 [https://github.com/jakubpawlowicz/clean-css/issues/160] - re-runs optimizer until a clean pass.


	Fixed issue #161 [https://github.com/jakubpawlowicz/clean-css/issues/161] - improves tokenizer performance.


	Fixed issue #163 [https://github.com/jakubpawlowicz/clean-css/issues/163] - round pixels to 2nd decimal place.


	Fixed issue #165 [https://github.com/jakubpawlowicz/clean-css/issues/165] - extra space after trailing parenthesis.


	Fixed issue #186 [https://github.com/jakubpawlowicz/clean-css/issues/186] - strip unit from 0rem.


	Fixed issue #207 [https://github.com/jakubpawlowicz/clean-css/issues/207] - bug in parsing protocol @imports.


	Fixed issue #213 [https://github.com/jakubpawlowicz/clean-css/issues/213] - faster rgb to hex transforms.


	Fixed issue #215 [https://github.com/jakubpawlowicz/clean-css/issues/215] - leading zeros in numerical values.


	Fixed issue #217 [https://github.com/jakubpawlowicz/clean-css/issues/217] - whitespace inside attribute selectors and URLs.


	Fixed issue #218 [https://github.com/jakubpawlowicz/clean-css/issues/218] - @import statements cleanup.


	Fixed issue #220 [https://github.com/jakubpawlowicz/clean-css/issues/220] - selector between comments.


	Fixed issue #223 [https://github.com/jakubpawlowicz/clean-css/issues/223] - two-pass adjacent selectors merging.


	Fixed issue #226 [https://github.com/jakubpawlowicz/clean-css/issues/226] - don’t minify border:none to border:0.


	Fixed issue #229 [https://github.com/jakubpawlowicz/clean-css/issues/229] - improved processing of fraction numbers.


	Fixed issue #230 [https://github.com/jakubpawlowicz/clean-css/issues/230] - better handling of zero values.


	Fixed issue #235 [https://github.com/jakubpawlowicz/clean-css/issues/235] - IE7 compatibility mode.


	Fixed issue #236 [https://github.com/jakubpawlowicz/clean-css/issues/236] - incorrect rebasing with nested imports.






2.0.8 / 2014-02-07 [https://github.com/jakubpawlowicz/clean-css/compare/v2.0.7...v2.0.8]


	Fixed issue #232 [https://github.com/jakubpawlowicz/clean-css/issues/232] - edge case in non-adjacent selectors merging.






2.0.7 / 2014-01-16 [https://github.com/jakubpawlowicz/clean-css/compare/v2.0.6...v2.0.7]


	Fixed issue #208 [https://github.com/jakubpawlowicz/clean-css/issues/208] - don’t swallow @page and @viewport.






2.0.6 / 2014-01-04 [https://github.com/jakubpawlowicz/clean-css/compare/v2.0.5...v2.0.6]


	Fixed issue #198 [https://github.com/jakubpawlowicz/clean-css/issues/198] - process comments and @imports correctly.


	Fixed issue #205 [https://github.com/jakubpawlowicz/clean-css/issues/205] - freeze on broken @import declaration.






2.0.5 / 2014-01-03 [https://github.com/jakubpawlowicz/clean-css/compare/v2.0.4...v2.0.5]


	Fixed issue #199 [https://github.com/jakubpawlowicz/clean-css/issues/199] - keep line breaks with no advanced optimizations.


	Fixed issue #203 [https://github.com/jakubpawlowicz/clean-css/issues/203] - Buffer as a first argument to minify method.






2.0.4 / 2013-12-19 [https://github.com/jakubpawlowicz/clean-css/compare/v2.0.3...v2.0.4]


	Fixed issue #193 [https://github.com/jakubpawlowicz/clean-css/issues/193] - HSL color space normalization.






2.0.3 / 2013-12-18 [https://github.com/jakubpawlowicz/clean-css/compare/v2.0.2...v2.0.3]


	Fixed issue #191 [https://github.com/jakubpawlowicz/clean-css/issues/191] - leading numbers in font/animation names.


	Fixed issue #192 [https://github.com/jakubpawlowicz/clean-css/issues/192] - many @imports inside a comment.






2.0.2 / 2013-11-18 [https://github.com/jakubpawlowicz/clean-css/compare/v2.0.1...v2.0.2]


	Fixed issue #177 [https://github.com/jakubpawlowicz/clean-css/issues/177] - process broken content correctly.






2.0.1 / 2013-11-14 [https://github.com/jakubpawlowicz/clean-css/compare/v2.0.0...v2.0.1]


	Fixed issue #176 [https://github.com/jakubpawlowicz/clean-css/issues/176] - hangs on undefined keyword.






2.0.0 / 2013-11-04 [https://github.com/jakubpawlowicz/clean-css/compare/v1.1.7...v2.0.0]


	Adds simplified and more advanced text escaping / restoring via EscapeStore class.


	Adds simplified and much faster empty elements removal.


	Adds missing @import processing to our benchmark (run via npm run bench).


	Adds CSS tokenizer which will make it possible to optimize content by reordering and/or merging selectors.


	Adds basic optimizer removing duplicate selectors from a list.


	Adds merging duplicate properties within a single selector’s body.


	Adds merging adjacent selectors within a scope (single and multiple ones).


	Changes behavior of --keep-line-breaks/keepBreaks option to keep breaks after trailing braces only.


	Makes all multiple selectors ordered alphabetically (aids merging).


	Adds property overriding so more coarse properties override more granular ones.


	Adds reducing non-adjacent selectors.


	Adds --skip-advanced/noAdvanced switch to disable advanced optimizations.


	Adds reducing non-adjacent selectors when overridden by more complex selectors.


	Fixed issue #138 [https://github.com/jakubpawlowicz/clean-css/issues/138] - makes CleanCSS interface OO.


	Fixed issue #139 [https://github.com/jakubpawlowicz/clean-css/issues/138] - consistent error & warning handling.


	Fixed issue #145 [https://github.com/jakubpawlowicz/clean-css/issues/145] - debug mode in library too.


	Fixed issue #157 [https://github.com/jakubpawlowicz/clean-css/issues/157] - gets rid of removeEmpty option.


	Fixed issue #159 [https://github.com/jakubpawlowicz/clean-css/issues/159] - escaped quotes inside content.


	Fixed issue #162 [https://github.com/jakubpawlowicz/clean-css/issues/162] - strip quotes from Base64 encoded URLs.


	Fixed issue #166 [https://github.com/jakubpawlowicz/clean-css/issues/166] - debug formatting in CLI


	Fixed issue #167 [https://github.com/jakubpawlowicz/clean-css/issues/167] - background:transparent minification.






1.1.7 / 2013-10-28 [https://github.com/jakubpawlowicz/clean-css/compare/v1.1.6...v1.1.7]


	Fixed issue #156 [https://github.com/jakubpawlowicz/clean-css/issues/156] - @imports inside comments.






1.1.6 / 2013-10-26 [https://github.com/jakubpawlowicz/clean-css/compare/v1.1.5...v1.1.6]


	Fixed issue #155 [https://github.com/jakubpawlowicz/clean-css/issues/155] - broken irregular CSS content.






1.1.5 / 2013-10-24 [https://github.com/jakubpawlowicz/clean-css/compare/v1.1.4...v1.1.5]


	Fixed issue #153 [https://github.com/jakubpawlowicz/clean-css/issues/153] - keepSpecialComments 0/1 as a string.






1.1.4 / 2013-10-23 [https://github.com/jakubpawlowicz/clean-css/compare/v1.1.3...v1.1.4]


	Fixed issue #152 [https://github.com/jakubpawlowicz/clean-css/issues/152] - adds an option to disable rebasing.






1.1.3 / 2013-10-04 [https://github.com/jakubpawlowicz/clean-css/compare/v1.1.2...v1.1.3]


	Fixed issue #150 [https://github.com/jakubpawlowicz/clean-css/issues/150] - minifying background:none.






1.1.2 / 2013-09-29 [https://github.com/jakubpawlowicz/clean-css/compare/v1.1.1...v1.1.2]


	Fixed issue #149 [https://github.com/jakubpawlowicz/clean-css/issues/149] - shorthand font property.






1.1.1 / 2013-09-07 [https://github.com/jakubpawlowicz/clean-css/compare/v1.1.0...v1.1.1]


	Fixed issue #144 [https://github.com/jakubpawlowicz/clean-css/issues/144] - skip URLs rebasing by default.






1.1.0 / 2013-09-06 [https://github.com/jakubpawlowicz/clean-css/compare/v1.0.12...v1.1.0]


	Renamed lib’s debug option to benchmark when doing per-minification benchmarking.


	Added simplified comments processing & imports.


	Fixed issue #43 [https://github.com/jakubpawlowicz/clean-css/issues/43] - --debug switch for minification stats.


	Fixed issue #65 [https://github.com/jakubpawlowicz/clean-css/issues/65] - full color name / hex shortening.


	Fixed issue #84 [https://github.com/jakubpawlowicz/clean-css/issues/84] - support for @import with media queries.


	Fixed issue #124 [https://github.com/jakubpawlowicz/clean-css/issues/124] - raise error on broken imports.


	Fixed issue #126 [https://github.com/jakubpawlowicz/clean-css/issues/126] - proper CSS expressions handling.


	Fixed issue #129 [https://github.com/jakubpawlowicz/clean-css/issues/129] - rebasing imported URLs.


	Fixed issue #130 [https://github.com/jakubpawlowicz/clean-css/issues/130] - better code modularity.


	Fixed issue #135 [https://github.com/jakubpawlowicz/clean-css/issues/135] - require node.js 0.8+.






1.0.12 / 2013-07-19 [https://github.com/jakubpawlowicz/clean-css/compare/v1.0.11...v1.0.12]


	Fixed issue #121 [https://github.com/jakubpawlowicz/clean-css/issues/121] - ability to skip @import processing.






1.0.11 / 2013-07-08 [https://github.com/jakubpawlowicz/clean-css/compare/v1.0.10...v1.0.11]


	Fixed issue #117 [https://github.com/jakubpawlowicz/clean-css/issues/117] - line break escaping in comments.






1.0.10 / 2013-06-13 [https://github.com/jakubpawlowicz/clean-css/compare/v1.0.9...v1.0.10]


	Fixed issue #114 [https://github.com/jakubpawlowicz/clean-css/issues/114] - comments in imported stylesheets.






1.0.9 / 2013-06-11 [https://github.com/jakubpawlowicz/clean-css/compare/v1.0.8...v1.0.9]


	Fixed issue #113 [https://github.com/jakubpawlowicz/clean-css/issues/113] - @import in comments.






1.0.8 / 2013-06-10 [https://github.com/jakubpawlowicz/clean-css/compare/v1.0.7...v1.0.8]


	Fixed issue #112 [https://github.com/jakubpawlowicz/clean-css/issues/112] - reducing box-shadow zeros.






1.0.7 / 2013-06-05 [https://github.com/jakubpawlowicz/clean-css/compare/v1.0.6...v1.0.7]


	Support for @import URLs starting with //. By @petetak [https://github.com/petetak].






1.0.6 / 2013-06-04 [https://github.com/jakubpawlowicz/clean-css/compare/v1.0.5...v1.0.6]


	Fixed issue #110 [https://github.com/jakubpawlowicz/clean-css/issues/110] - data URIs in URLs.






1.0.5 / 2013-05-26 [https://github.com/jakubpawlowicz/clean-css/compare/v1.0.4...v1.0.5]


	Fixed issue #107 [https://github.com/jakubpawlowicz/clean-css/issues/107] - data URIs in imported stylesheets.






1.0.4 / 2013-05-23


	Rewrite relative URLs in imported stylesheets. By @bluej100 [https://github.com/bluej100].






1.0.3 / 2013-05-20


	Support alternative @import syntax with file name not wrapped inside url() statement.
By @bluej100 [https://github.com/bluej100].






1.0.2 / 2013-04-29


	Fixed issue #97 [https://github.com/jakubpawlowicz/clean-css/issues/97] - --remove-empty & FontAwesome.






1.0.1 / 2013-04-08


	Do not pick up bench and test while building npm package.
By @sindresorhus [https://https://github.com/sindresorhus].






1.0.0 / 2013-03-30


	Fixed issue #2 [https://github.com/jakubpawlowicz/clean-css/issues/2] - resolving @import rules.


	Fixed issue #44 [https://github.com/jakubpawlowicz/clean-css/issues/44] - examples in --help.


	Fixed issue #46 [https://github.com/jakubpawlowicz/clean-css/issues/46] - preserving special characters in URLs and attributes.


	Fixed issue #80 [https://github.com/jakubpawlowicz/clean-css/issues/80] - quotation in multi line strings.


	Fixed issue #83 [https://github.com/jakubpawlowicz/clean-css/issues/83] - HSL to hex color conversions.


	Fixed issue #86 [https://github.com/jakubpawlowicz/clean-css/issues/86] - broken @charset replacing.


	Fixed issue #88 [https://github.com/jakubpawlowicz/clean-css/issues/88] - removes space in ! important.


	Fixed issue #92 [https://github.com/jakubpawlowicz/clean-css/issues/92] - uppercase hex to short versions.






0.10.2 / 2013-03-19


	Fixed issue #79 [https://github.com/jakubpawlowicz/clean-css/issues/79] - node.js 0.10.x compatibility.






0.10.1 / 2013-02-14


	Fixed issue #66 [https://github.com/jakubpawlowicz/clean-css/issues/66] - line breaks without extra spaces should
be handled correctly.






0.10.0 / 2013-02-09


	Switched from optimist [https://github.com/substack/node-optimist] to
commander [https://github.com/visionmedia/commander.js] for CLI processing.


	Changed long options from --removeempty to --remove-empty and from --keeplinebreaks to --keep-line-breaks.


	Fixed performance issue with replacing multiple @charset declarations and issue
with line break after @charset when using keepLineBreaks option. By @rrjaime [https://github.com/rrjamie].


	Removed Makefile in favor to npm run commands (e.g. make check -> npm run check).


	Fixed issue #47 [https://github.com/jakubpawlowicz/clean-css/issues/47] - commandline issues on Windows.


	Fixed issue #49 [https://github.com/jakubpawlowicz/clean-css/issues/49] - remove empty selectors from media query.


	Fixed issue #52 [https://github.com/jakubpawlowicz/clean-css/issues/52] - strip fraction zeros if not needed.


	Fixed issue #58 [https://github.com/jakubpawlowicz/clean-css/issues/58] - remove colon where possible.


	Fixed issue #59 [https://github.com/jakubpawlowicz/clean-css/issues/59] - content property handling.






0.9.1 / 2012-12-19


	Fixed issue #37 [https://github.com/jakubpawlowicz/clean-css/issues/37] - converting
white and other colors in class names (reported by @malgorithms [https://github.com/malgorithms]).






0.9.0 / 2012-12-15


	Added stripping quotation from font names (if possible).


	Added stripping quotation from @keyframes declaration, animation and
animation-name property.


	Added stripping quotations from attributes’ value (e.g. [data-target='x']).


	Added better hex->name and name->hex color shortening.


	Added font: normal and font: bold shortening the same way as font-weight is.


	Refactored shorthand selectors and added border-radius, border-style
and border-color shortening.


	Added margin, padding and border-width shortening.


	Added removing line break after commas.


	Fixed removing whitespace inside media query definition.


	Added removing line breaks after a comma, so all declarations are one-liners now.


	Speed optimizations (~10% despite many new features).


	Added JSHint [https://github.com/jshint/jshint/] validation rules via make check.






0.8.3 / 2012-11-29


	Fixed HSL/HSLA colors processing.






0.8.2 / 2012-10-31


	Fixed shortening hex colors and their relation to hashes in URLs.


	Cleanup by @XhmikosR [https://github.com/XhmikosR].






0.8.1 / 2012-10-28


	Added better zeros processing for rect(...) syntax (clip property).






0.8.0 / 2012-10-21


	Added removing URLs quotation if possible.


	Rewrote breaks processing.


	Added keepBreaks/-b option to keep line breaks in the minimized file.


	Reformatted lib/clean.js so it’s easier to follow the rules.


	Minimized test data is now minimized with line breaks so it’s easier to
compare the changes line by line.






0.7.0 / 2012-10-14


	Added stripping special comments to CLI (--s0 and --s1 options).


	Added stripping special comments to programmatic interface
(keepSpecialComments option).






0.6.0 / 2012-08-05


	Full Windows support with tests (./test.bat).






0.5.0 / 2012-08-02


	Made path to vows local.


	Explicit node.js 0.6 requirement.






0.4.2 / 2012-06-28


	Updated binary -v option (version).


	Updated binary to output help when no options given (but not in piped mode).


	Added binary tests.






0.4.1 / 2012-06-10


	Fixed stateless mode where calling CleanCSS#process directly was giving
errors (reported by @facelessuser [https://github.com/facelessuser]).






0.4.0 / 2012-06-04


	Speed improvements up to 4x thanks to the rewrite of comments and CSS’ content
processing.


	Stripping empty CSS tags is now optional (see bin/cleancss for details).


	Improved debugging mode (see test/bench.js)


	Added make bench for a one-pass benchmark.






0.3.3 / 2012-05-27


	Fixed tests, package.json for development, and regex
for removing empty declarations (thanks to @vvo [https://github.com/vvo]).






0.3.2 / 2012-01-17


	Fixed output method under node.js 0.6 which incorrectly tried to close
process.stdout.






0.3.1 / 2011-12-16


	Fixed cleaning up 0 0 0 0 expressions.






0.3.0 / 2011-11-29


	Clean-css requires node.js 0.4.0+ to run.


	Removed node.js’s 0.2.x ‘sys’ package dependency
(thanks to @jmalonzo [https://github.com/jmalonzo] for a patch).






0.2.6 / 2011-11-27


	Fixed expanding + signs in calc() when mixed up with adjacent + selector.






0.2.5 / 2011-11-27


	Fixed issue with cleaning up spaces inside calc/-moz-calc declarations
(thanks to @cvan [https://github.com/cvan] for reporting it).


	Fixed converting #f00 to red in borders and gradients.






0.2.4 / 2011-05-25


	Fixed problem with expanding none to 0 in partial/full background
declarations.


	Fixed including clean-css library from binary (global to local).






0.2.3 / 2011-04-18


	Fixed problem with optimizing IE filters.






0.2.2 / 2011-04-17


	Fixed problem with space before color in border property.






0.2.1 / 2011-03-19


	Added stripping space before !important keyword.


	Updated repository location and author information in package.json.






0.2.0 / 2011-03-02


	Added options parsing via optimist.


	Changed code inclusion (thus the version bump).






0.1.0 / 2011-02-27


	First version of clean-css library.


	Implemented all basic CSS transformations.







          

      

      

    

  

  
    

    What is clean-css?
    

    
 
  

    
      
          
            
  [image: ../../_images/clean-css.svg]NPM version [https://www.npmjs.com/package/clean-css]
[image: ../../_images/master12.svg]Linux Build Status [https://travis-ci.org/jakubpawlowicz/clean-css]
[image: ../../_images/master13.svg]Windows Build status [https://ci.appveyor.com/project/jakubpawlowicz/clean-css/branch/master]
[image: ../../_images/clean-css1.svg]Dependency Status [https://david-dm.org/jakubpawlowicz/clean-css]
[image: ../../_images/clean-css2.svg]devDependency Status [https://david-dm.org/jakubpawlowicz/clean-css#info=devDependencies]


What is clean-css?

Clean-css is a fast and efficient Node.js [http://nodejs.org/] library for minifying CSS files.

According to tests [http://goalsmashers.github.io/css-minification-benchmark/] it is one of the best available.



Usage


What are the requirements?

Node.js 0.10+ (tested on CentOS, Ubuntu, OS X 10.6+, and Windows 7+) or io.js 3.0+







How to install clean-css?

npm install clean-css







How to use clean-css CLI?

Clean-css accepts the following command line arguments (please make sure
you use <source-file> as the very last argument to avoid potential issues):

cleancss [options] source-file, [source-file, ...]

-h, --help                     output usage information
-v, --version                  output the version number
-b, --keep-line-breaks         Keep line breaks
-c, --compatibility [ie7|ie8]  Force compatibility mode (see Readme for advanced examples)
-d, --debug                    Shows debug information (minification time & compression efficiency)
-o, --output [output-file]     Use [output-file] as output instead of STDOUT
-r, --root [root-path]         Set a root path to which resolve absolute @import rules
-s, --skip-import              Disable @import processing
-t, --timeout [seconds]        Per connection timeout when fetching remote @imports (defaults to 5 seconds)
--rounding-precision [n]       Rounds to `N` decimal places. Defaults to 2. -1 disables rounding
--s0                           Remove all special comments, i.e. /*! comment */
--s1                           Remove all special comments but the first one
--semantic-merging             Enables unsafe mode by assuming BEM-like semantic stylesheets (warning, this may break your styling!)
--skip-advanced                Disable advanced optimizations - ruleset reordering & merging
--skip-aggressive-merging      Disable properties merging based on their order
--skip-import-from [rules]     Disable @import processing for specified rules
--skip-media-merging           Disable @media merging
--skip-rebase                  Disable URLs rebasing
--skip-restructuring           Disable restructuring optimizations
--skip-shorthand-compacting    Disable shorthand compacting
--source-map                   Enables building input's source map
--source-map-inline-sources    Enables inlining sources inside source maps






Examples:

To minify a public.css file into public-min.css do:

cleancss -o public-min.css public.css





To minify the same public.css into the standard output skip the -o parameter:

cleancss public.css





More likely you would like to concatenate a couple of files.
If you are on a Unix-like system:

cat one.css two.css three.css | cleancss -o merged-and-minified.css





On Windows:

type one.css two.css three.css | cleancss -o merged-and-minified.css





Or even gzip the result at once:

cat one.css two.css three.css | cleancss | gzip -9 -c > merged-minified-and-gzipped.css.gz








How to use clean-css API?

var CleanCSS = require('clean-css');
var source = 'a{font-weight:bold;}';
var minified = new CleanCSS().minify(source).styles;





CleanCSS constructor accepts a hash as a parameter, i.e.,
new CleanCSS(options) with the following options available:


	advanced - set to false to disable advanced optimizations - selector & property merging, reduction, etc.


	aggressiveMerging - set to false to disable aggressive merging of properties.


	benchmark - turns on benchmarking mode measuring time spent on cleaning up (run npm run bench to see example)


	compatibility - enables compatibility mode, see below for more examples


	debug - set to true to get minification statistics under stats property (see test/custom-test.js for examples)


	inliner - a hash of options for @import inliner, see test/protocol-imports-test.js [https://github.com/jakubpawlowicz/clean-css/blob/master/test/protocol-imports-test.js#L372] for examples, or this comment [https://github.com/jakubpawlowicz/clean-css/issues/612#issuecomment-119594185] for a proxy use case.


	keepBreaks - whether to keep line breaks (default is false)


	keepSpecialComments - * for keeping all (default), 1 for keeping first one only, 0 for removing all


	mediaMerging - whether to merge @media at-rules (default is true)


	processImport - whether to process @import rules


	processImportFrom - a list of @import rules, can be ['all'] (default), ['local'], ['remote'], or a blacklisted path e.g. ['!fonts.googleapis.com']


	rebase - set to false to skip URL rebasing


	relativeTo - path to resolve relative @import rules and URLs


	restructuring - set to false to disable restructuring in advanced optimizations


	root - path to resolve absolute @import rules and rebase relative URLs


	roundingPrecision - rounding precision; defaults to 2; -1 disables rounding


	semanticMerging - set to true to enable semantic merging mode which assumes BEM-like content (default is false as it’s highly likely this will break your stylesheets - use with caution!)


	shorthandCompacting - set to false to skip shorthand compacting (default is true unless sourceMap is set when it’s false)


	sourceMap - exposes source map under sourceMap property, e.g. new CleanCSS().minify(source).sourceMap (default is false)
If input styles are a product of CSS preprocessor (Less, Sass) an input source map can be passed as a string.


	sourceMapInlineSources - set to true to inline sources inside a source map’s sourcesContent field (defaults to false)
It is also required to process inlined sources from input source maps.


	target - path to a folder or an output file to which rebase all URLs




The output of minify method (or the 2nd argument to passed callback) is a hash containing the following fields:


	styles - optimized output CSS as a string


	sourceMap - output source map (if requested with sourceMap option)


	errors - a list of errors raised


	warnings - a list of warnings raised


	stats - a hash of statistic information (if requested with debug option):


	originalSize - original content size (after import inlining)


	minifiedSize - optimized content size


	timeSpent - time spent on optimizations


	efficiency - a ratio of output size to input size (e.g. 25% if content was reduced from 100 bytes to 75 bytes)









How to make sure remote @imports are processed correctly?

In order to inline remote @import statements you need to provide a callback to minify method, e.g.:

var CleanCSS = require('clean-css');
var source = '@import url(http://path/to/remote/styles);';
new CleanCSS().minify(source, function (errors, minified) {
  // minified.styles
});





This is due to a fact, that, while local files can be read synchronously, remote resources can only be processed asynchronously.
If you don’t provide a callback, then remote @imports will be left intact.




How to use clean-css with build tools?


	Broccoli [https://github.com/broccolijs/broccoli#broccoli]: broccoli-clean-css [https://github.com/shinnn/broccoli-clean-css]


	Brunch [http://brunch.io/]: clean-css-brunch [https://github.com/brunch/clean-css-brunch]


	Grunt [http://gruntjs.com]: grunt-contrib-cssmin [https://github.com/gruntjs/grunt-contrib-cssmin]


	Gulp [http://gulpjs.com/]: gulp-minify-css [https://github.com/jonathanepollack/gulp-minify-css]


	Gulp [http://gulpjs.com/]: using vinyl-map as a wrapper - courtesy of @sogko [https://github.com/jakubpawlowicz/clean-css/issues/342]


	component-builder2 [https://github.com/component/builder2.js]: builder-clean-css [https://github.com/poying/builder-clean-css]


	Metalsmith [http://metalsmith.io]: metalsmith-clean-css [https://github.com/aymericbeaumet/metalsmith-clean-css]


	Lasso [https://github.com/lasso-js/lasso]: lasso-clean-css [https://github.com/yomed/lasso-clean-css]






What are the clean-css’ dev commands?

First clone the source, then run:


	npm run bench for clean-css benchmarks (see test/bench.js [https://github.com/jakubpawlowicz/clean-css/blob/master/test/bench.js] for details)


	npm run browserify to create the browser-ready clean-css version


	npm run check to check JS sources with JSHint [https://github.com/jshint/jshint/]


	npm test for the test suite







How to contribute to clean-css?

See CONTRIBUTING.md [https://github.com/jakubpawlowicz/clean-css/blob/master/CONTRIBUTING].



Tips & Tricks


How to preserve a comment block?

Use the /*! notation instead of the standard one /*:

/*!
  Important comments included in minified output.
*/







How to rebase relative image URLs?

Clean-css will handle it automatically for you (since version 1.1) in the following cases:


	When using the CLI:


	Use an output path via -o/--output to rebase URLs as relative to the output file.


	Use a root path via -r/--root to rebase URLs as absolute from the given root path.


	If you specify both then -r/--root takes precendence.






	When using clean-css as a library:


	Use a combination of relativeTo and target options for relative rebase (same as 1 in CLI).


	Use a combination of relativeTo and root options for absolute rebase (same as 2 in CLI).


	root takes precendence over target as in CLI.










How to generate source maps?

Source maps are supported since version 3.0.

Additionally to mapping original CSS files, clean-css also supports input source maps, so minified styles can be mapped into their Less [http://lesscss.org/] or Sass [http://sass-lang.com/] sources directly.

Source maps are generated using source-map [https://github.com/mozilla/source-map/] module from Mozilla.


Using CLI

To generate a source map, use --source-map switch, e.g.:

cleancss --source-map --output styles.min.css styles.css





Name of the output file is required, so a map file, named by adding .map suffix to output file name, can be created (styles.min.css.map in this case).



Using API

To generate a source map, use sourceMap: true option, e.g.:

new CleanCSS({ sourceMap: true, target: pathToOutputDirectory })
  .minify(source, function (minified) {
    // access minified.sourceMap for SourceMapGenerator object
    // see https://github.com/mozilla/source-map/#sourcemapgenerator for more details
    // see https://github.com/jakubpawlowicz/clean-css/blob/master/bin/cleancss#L114 on how it's used in clean-css' CLI
});





Using API you can also pass an input source map directly:

new CleanCSS({ sourceMap: inputSourceMapAsString, target: pathToOutputDirectory })
  .minify(source, function (minified) {
    // access minified.sourceMap to access SourceMapGenerator object
    // see https://github.com/mozilla/source-map/#sourcemapgenerator for more details
    // see https://github.com/jakubpawlowicz/clean-css/blob/master/bin/cleancss#L114 on how it's used in clean-css' CLI
});





Or even multiple input source maps at once (available since version 3.1):

new CleanCSS({ sourceMap: true, target: pathToOutputDirectory }).minify({
  'path/to/source/1': {
    styles: '...styles...',
    sourceMap: '...source-map...'
  },
  'path/to/source/2': {
    styles: '...styles...',
    sourceMap: '...source-map...'
  }
}, function (minified) {
  // access minified.sourceMap as above
});








How to minify multiple files with API?


Passing an array

new CleanCSS().minify(['path/to/file/one', 'path/to/file/two']);







Passing a hash

new CleanCSS().minify({
  'path/to/file/one': {
    styles: 'contents of file one'
  },
  'path/to/file/two': {
    styles: 'contents of file two'
  }
});








How to set a compatibility mode?

Compatibility settings are controlled by --compatibility switch (CLI) and compatibility option (library mode).

In both modes the following values are allowed:


	'ie7' - Internet Explorer 7 compatibility mode


	'ie8' - Internet Explorer 8 compatibility mode


	'' or '*' (default) - Internet Explorer 9+ compatibility mode




Since clean-css 3 a fine grained control is available over
those settings [https://github.com/jakubpawlowicz/clean-css/blob/master/lib/utils/compatibility.js],
with the following options available:


	'[+-]colors.opacity' - - turn on (+) / off (-) rgba() / hsla() declarations removal


	'[+-]properties.backgroundClipMerging' - turn on / off background-clip merging into shorthand


	'[+-]properties.backgroundOriginMerging' - turn on / off background-origin merging into shorthand


	'[+-]properties.backgroundSizeMerging' - turn on / off background-size merging into shorthand


	'[+-]properties.colors' - turn on / off any color optimizations


	'[+-]properties.ieBangHack' - turn on / off IE bang hack removal


	'[+-]properties.iePrefixHack' - turn on / off IE prefix hack removal


	'[+-]properties.ieSuffixHack' - turn on / off IE suffix hack removal


	'[+-]properties.merging' - turn on / off property merging based on understandability


	'[+-]properties.spaceAfterClosingBrace' - turn on / off removing space after closing brace - url() no-repeat into url()no-repeat


	'[+-]properties.urlQuotes' - turn on / off url() quoting


	'[+-]properties.zeroUnits' - turn on / off units removal after a 0 value


	'[+-]selectors.adjacentSpace' - turn on / off extra space before nav element


	'[+-]selectors.ie7Hack' - turn on / off IE7 selector hack removal (*+html...)


	'[+-]selectors.special' - a regular expression with all special, unmergeable selectors (leave it empty unless you know what you are doing)


	'[+-]units.ch' - turn on / off treating ch as a proper unit


	'[+-]units.in' - turn on / off treating in as a proper unit


	'[+-]units.pc' - turn on / off treating pc as a proper unit


	'[+-]units.pt' - turn on / off treating pt as a proper unit


	'[+-]units.rem' - turn on / off treating rem as a proper unit


	'[+-]units.vh' - turn on / off treating vh as a proper unit


	'[+-]units.vm' - turn on / off treating vm as a proper unit


	'[+-]units.vmax' - turn on / off treating vmax as a proper unit


	'[+-]units.vmin' - turn on / off treating vmin as a proper unit


	'[+-]units.vm' - turn on / off treating vm as a proper unit




For example, using --compatibility 'ie8,+units.rem' will ensure IE8 compatibility while enabling rem units so the following style margin:0px 0rem can be shortened to margin:0, while in pure IE8 mode it can’t be.

To pass a single off (-) switch in CLI please use the following syntax --compatibility *,-units.rem.

In library mode you can also pass compatibility as a hash of options.



What advanced optimizations are applied?

All advanced optimizations are dispatched here [https://github.com/jakubpawlowicz/clean-css/blob/master/lib/selectors/advanced.js#L59], and this is what they do:


	recursivelyOptimizeBlocks - does all the following operations on a block (think @media or @keyframe at-rules);


	recursivelyOptimizeProperties - optimizes properties in rulesets and “flat at-rules” (like @font-face) by splitting them into components (e.g. margin into margin-(*)), optimizing, and rebuilding them back. You may want to use shorthandCompacting option to control whether you want to turn multiple (long-hand) properties into a shorthand ones;


	removeDuplicates - gets rid of duplicate rulesets with exactly the same set of properties (think of including the same Sass / Less partial twice for no good reason);


	mergeAdjacent - merges adjacent rulesets with the same selector or rules;


	reduceNonAdjacent - identifies which properties are overridden in same-selector non-adjacent rulesets, and removes them;


	mergeNonAdjacentBySelector - identifies same-selector non-adjacent rulesets which can be moved (!) to be merged, requires all intermediate rulesets to not redefine the moved properties, or if redefined to be either more coarse grained (e.g. margin vs margin-top) or have the same value;


	mergeNonAdjacentByBody - same as the one above but for same-rules non-adjacent rulesets;


	restructure - tries to reorganize different-selector different-rules rulesets so they take less space, e.g. .one{padding:0}.two{margin:0}.one{margin-bottom:3px} into .two{margin:0}.one{padding:0;margin-bottom:3px};


	removeDuplicateMediaQueries - removes duplicated @media at-rules;


	mergeMediaQueries - merges non-adjacent @media at-rules by same rules as mergeNonAdjacentBy* above;







Acknowledgments (sorted alphabetically)


	Anthony Barre (@abarre [https://github.com/abarre]) for improvements to
@import processing, namely introducing the --skip-import /
processImport options.


	Simon Altschuler (@altschuler [https://github.com/altschuler]) for fixing
@import processing inside comments.


	Isaac (@facelessuser [https://github.com/facelessuser]) for pointing out
a flaw in clean-css’ stateless mode.


	Jan Michael Alonzo (@jmalonzo [https://github.com/jmalonzo]) for a patch
removing node.js’ old sys package.


	Luke Page (@lukeapage [https://github.com/lukeapage]) for suggestions and testing the source maps feature.
Plus everyone else involved in #125 [https://github.com/jakubpawlowicz/clean-css/issues/125] for pushing it forward.


	Timur Kristóf (@Venemo [https://github.com/Venemo]) for an outstanding
contribution of advanced property optimizer for 2.2 release.


	Vincent Voyer (@vvo [https://github.com/vvo]) for a patch with better
empty element regex and for inspiring us to do many performance improvements
in 0.4 release.


	@XhmikosR [https://github.com/XhmikosR] for suggesting new features
(option to remove special comments and strip out URLs quotation) and
pointing out numerous improvements (JSHint, media queries).






License

Clean-css is released under the MIT License [https://github.com/jakubpawlowicz/clean-css/blob/master/LICENSE].




          

      

      

    

  

  
    

    2.8.1 / 2015-04-22
    

    
 
  

    
      
          
            
  
2.8.1 / 2015-04-22


	Back out support multiline description Close #396 #397






2.8.0 / 2015-04-07


	Add process.execArg support, execution args like --harmony will be passed to sub-commands #387 @DigitalIO @zhiyelee


	Fix bug in Git-style sub-commands #372 @zhiyelee


	Allow commands to be hidden from help #383 @tonylukasavage


	When git-style sub-commands are in use, yet none are called, display help #382 @claylo


	Add ability to specify arguments syntax for top-level command #258 @rrthomas


	Support multiline descriptions #208 @zxqfox






2.7.1 / 2015-03-11


	Revert #347 (fix collisions when option and first arg have same name) which causes a bug in #367.






2.7.0 / 2015-03-09


	Fix git-style bug when installed globally. Close #335 #349 @zhiyelee


	Fix collisions when option and first arg have same name. Close #346 #347 @tonylukasavage


	Add support for camelCase on opts(). Close #353  @nkzawa


	Add node.js 0.12 and io.js to travis.yml


	Allow RegEx options. #337 @palanik


	Fixes exit code when sub-command failing.  Close #260 #332 @pirelenito


	git-style bin files in $PATH make sense. Close #196 #327  @zhiyelee






2.6.0 / 2014-12-30


	added Command#allowUnknownOption method. Close #138 #318 @doozr @zhiyelee


	Add application description to the help msg. Close #112 @dalssoft






2.5.1 / 2014-12-15


	fixed two bugs incurred by variadic arguments. Close #291 @Quentin01 #302 @zhiyelee






2.5.0 / 2014-10-24


	add support for variadic arguments. Closes #277 @whitlockjc






2.4.0 / 2014-10-17


	fixed a bug on executing the coercion function of subcommands option. Closes #270


	added Command.prototype.name to retrieve command name. Closes #264 #266 @tonylukasavage


	added Command.prototype.opts to retrieve all the options as a simple object of key-value pairs. Closes #262 @tonylukasavage


	fixed a bug on subcommand name. Closes #248 @jonathandelgado


	fixed function normalize doesn’t honor option terminator. Closes #216 @abbr






2.3.0 / 2014-07-16


	add command alias’. Closes PR #210


	fix: Typos. Closes #99


	fix: Unused fs module. Closes #217






2.2.0 / 2014-03-29


	add passing of previous option value


	fix: support subcommands on windows. Closes #142


	Now the defaultValue passed as the second argument of the coercion function.






2.1.0 / 2013-11-21


	add: allow cflag style option params, unit test, fixes #174






2.0.0 / 2013-07-18


	remove input methods (.prompt, .confirm, etc)






1.3.2 / 2013-07-18


	add support for sub-commands to co-exist with the original command






1.3.1 / 2013-07-18


	add quick .runningCommand hack so you can opt-out of other logic when running a sub command






1.3.0 / 2013-07-09


	add EACCES error handling


	fix sub-command –help






1.2.0 / 2013-06-13


	allow “-” hyphen as an option argument


	support for RegExp coercion






1.1.1 / 2012-11-20


	add more sub-command padding


	fix .usage() when args are present. Closes #106






1.1.0 / 2012-11-16


	add git-style executable subcommand support. Closes #94






1.0.5 / 2012-10-09


	fix --name clobbering. Closes #92


	fix examples/help. Closes #89






1.0.4 / 2012-09-03


	add outputHelp() method.






1.0.3 / 2012-08-30


	remove invalid .version() defaulting






1.0.2 / 2012-08-24


	add --foo=bar support [arv]


	fix password on node 0.8.8. Make backward compatible with 0.6 [focusaurus]






1.0.1 / 2012-08-03


	fix issue #56


	fix tty.setRawMode(mode) was moved to tty.ReadStream#setRawMode() (i.e. process.stdin.setRawMode())






1.0.0 / 2012-07-05


	add support for optional option descriptions


	add defaulting of .version() to package.json’s version






0.6.1 / 2012-06-01


	Added: append (yes or no) on confirmation


	Added: allow node.js v0.7.x






0.6.0 / 2012-04-10


	Added .prompt(obj, callback) support. Closes #49


	Added default support to .choose(). Closes #41


	Fixed the choice example






0.5.1 / 2011-12-20


	Fixed password() for recent nodes. Closes #36






0.5.0 / 2011-12-04


	Added sub-command option support [itay]






0.4.3 / 2011-12-04


	Fixed custom help ordering. Closes #32






0.4.2 / 2011-11-24


	Added travis support


	Fixed: line-buffered input automatically trimmed. Closes #31






0.4.1 / 2011-11-18


	Removed listening for “close” on –help






0.4.0 / 2011-11-15


	Added support for --. Closes #24






0.3.3 / 2011-11-14


	Fixed: wait for close event when writing help info [Jerry Hamlet]






0.3.2 / 2011-11-01


	Fixed long flag definitions with values [felixge]






0.3.1 / 2011-10-31


	Changed --version short flag to -V from -v


	Changed .version() so it’s configurable [felixge]






0.3.0 / 2011-10-31


	Added support for long flags only. Closes #18






0.2.1 / 2011-10-24


	“node”: “>= 0.4.x < 0.7.0”. Closes #20






0.2.0 / 2011-09-26


	Allow for defaults that are not just boolean. Default peassignment only occurs for –no-*, optional, and required arguments. [Jim Isaacs]






0.1.0 / 2011-08-24


	Added support for custom --help output






0.0.5 / 2011-08-18


	Changed: when the user enters nothing prompt for password again


	Fixed issue with passwords beginning with numbers [NuckChorris]






0.0.4 / 2011-08-15


	Fixed Commander#args






0.0.3 / 2011-08-15


	Added default option value support






0.0.2 / 2011-08-15


	Added mask support to Command#password(str[, mask], fn)


	Added Command#password(str, fn)






0.0.1 / 2010-01-03


	Initial release







          

      

      

    

  

  
    

    Commander.js
    

    
 
  

    
      
          
            
  
Commander.js

[image: ../../../../_images/commander.js.svg]Build Status [http://travis-ci.org/tj/commander.js]
[image: ../../../../_images/commander.svg]NPM Version [https://www.npmjs.org/package/commander]
[image: ../../../../_images/commander1.svg]NPM Downloads [https://www.npmjs.org/package/commander]
[image: ../../../../_images/Join%20Chat.svg]Join the chat at https://gitter.im/tj/commander.js [https://gitter.im/tj/commander.js?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge]

The complete solution for node.js [http://nodejs.org] command-line interfaces, inspired by Ruby’s commander [https://github.com/tj/commander].API documentation [http://tj.github.com/commander.js/]


Installation

$ npm install commander







Option parsing

Options with commander are defined with the .option() method, also serving as documentation for the options. The example below parses args and options from process.argv, leaving remaining args as the program.args array which were not consumed by options.

#!/usr/bin/env node

/**
 * Module dependencies.
 */

var program = require('commander');

program
  .version('0.0.1')
  .option('-p, --peppers', 'Add peppers')
  .option('-P, --pineapple', 'Add pineapple')
  .option('-b, --bbq-sauce', 'Add bbq sauce')
  .option('-c, --cheese [type]', 'Add the specified type of cheese [marble]', 'marble')
  .parse(process.argv);

console.log('you ordered a pizza with:');
if (program.peppers) console.log('  - peppers');
if (program.pineapple) console.log('  - pineapple');
if (program.bbqSauce) console.log('  - bbq');
console.log('  - %s cheese', program.cheese);





Short flags may be passed as a single arg, for example -abc is equivalent to -a -b -c. Multi-word options such as “–template-engine” are camel-cased, becoming program.templateEngine etc.



Coercion

function range(val) {
  return val.split('..').map(Number);
}

function list(val) {
  return val.split(',');
}

function collect(val, memo) {
  memo.push(val);
  return memo;
}

function increaseVerbosity(v, total) {
  return total + 1;
}

program
  .version('0.0.1')
  .usage('[options] <file ...>')
  .option('-i, --integer <n>', 'An integer argument', parseInt)
  .option('-f, --float <n>', 'A float argument', parseFloat)
  .option('-r, --range <a>..<b>', 'A range', range)
  .option('-l, --list <items>', 'A list', list)
  .option('-o, --optional [value]', 'An optional value')
  .option('-c, --collect [value]', 'A repeatable value', collect, [])
  .option('-v, --verbose', 'A value that can be increased', increaseVerbosity, 0)
  .parse(process.argv);

console.log(' int: %j', program.integer);
console.log(' float: %j', program.float);
console.log(' optional: %j', program.optional);
program.range = program.range || [];
console.log(' range: %j..%j', program.range[0], program.range[1]);
console.log(' list: %j', program.list);
console.log(' collect: %j', program.collect);
console.log(' verbosity: %j', program.verbose);
console.log(' args: %j', program.args);







Regular Expression

program
  .version('0.0.1')
  .option('-s --size <size>', 'Pizza size', /^(large|medium|small)$/i, 'medium')
  .option('-d --drink [drink]', 'Drink', /^(coke|pepsi|izze)$/i)
  .parse(process.argv);
  
console.log(' size: %j', program.size);
console.log(' drink: %j', program.drink);







Variadic arguments

The last argument of a command can be variadic, and only the last argument.  To make an argument variadic you have to
append ... to the argument name.  Here is an example:

#!/usr/bin/env node

/**
 * Module dependencies.
 */

var program = require('commander');

program
  .version('0.0.1')
  .command('rmdir <dir> [otherDirs...]')
  .action(function (dir, otherDirs) {
    console.log('rmdir %s', dir);
    if (otherDirs) {
      otherDirs.forEach(function (oDir) {
        console.log('rmdir %s', oDir);
      });
    }
  });

program.parse(process.argv);





An Array is used for the value of a variadic argument.  This applies to program.args as well as the argument passed
to your action as demonstrated above.



Specify the argument syntax

#!/usr/bin/env node

var program = require('../');

program
  .version('0.0.1')
  .arguments('<cmd> [env]')
  .action(function (cmd, env) {
     cmdValue = cmd;
     envValue = env;
  });

program.parse(process.argv);

if (typeof cmdValue === 'undefined') {
   console.error('no command given!');
   process.exit(1);
}
console.log('command:', cmdValue);
console.log('environment:', envValue || "no environment given");







Git-style sub-commands

// file: ./examples/pm
var program = require('..');

program
  .version('0.0.1')
  .command('install [name]', 'install one or more packages')
  .command('search [query]', 'search with optional query')
  .command('list', 'list packages installed')
  .parse(process.argv);





When .command() is invoked with a description argument, no .action(callback) should be called to handle sub-commands, otherwise there will be an error. This tells commander that you’re going to use separate executables for sub-commands, much like git(1) and other popular tools.The commander will try to search the executables in the directory of the entry script (like ./examples/pm) with the name program-command, like pm-install, pm-search.

If the program is designed to be installed globally, make sure the executables have proper modes, like 755.


--harmony

You can enable --harmony option in two ways:


	Use #! /usr/bin/env node --harmony in the sub-commands scripts. Note some os version don’t support this pattern.


	Use the --harmony option when call the command, like node --harmony examples/pm publish. The --harmony option will be preserved when spawning sub-command process.







Automated –help

The help information is auto-generated based on the information commander already knows about your program, so the following --help info is for free:

 $ ./examples/pizza --help

   Usage: pizza [options]

   An application for pizzas ordering

   Options:

     -h, --help           output usage information
     -V, --version        output the version number
     -p, --peppers        Add peppers
     -P, --pineapple      Add pineapple
     -b, --bbq            Add bbq sauce
     -c, --cheese <type>  Add the specified type of cheese [marble]
     -C, --no-cheese      You do not want any cheese







Custom help

You can display arbitrary -h, --help information
by listening for “–help”. Commander will automatically
exit once you are done so that the remainder of your program
does not execute causing undesired behaviours, for example
in the following executable “stuff” will not output when
--help is used.

#!/usr/bin/env node

/**
 * Module dependencies.
 */

var program = require('commander');

program
  .version('0.0.1')
  .option('-f, --foo', 'enable some foo')
  .option('-b, --bar', 'enable some bar')
  .option('-B, --baz', 'enable some baz');

// must be before .parse() since
// node's emit() is immediate

program.on('--help', function(){
  console.log('  Examples:');
  console.log('');
  console.log('    $ custom-help --help');
  console.log('    $ custom-help -h');
  console.log('');
});

program.parse(process.argv);

console.log('stuff');





Yields the following help output when node script-name.js -h or node script-name.js --help are run:


Usage: custom-help [options]

Options:

  -h, --help     output usage information
  -V, --version  output the version number
  -f, --foo      enable some foo
  -b, --bar      enable some bar
  -B, --baz      enable some baz

Examples:

  $ custom-help --help
  $ custom-help -h







.outputHelp()

Output help information without exiting.

If you want to display help by default (e.g. if no command was provided), you can use something like:

var program = require('commander');

program
  .version('0.0.1')
  .command('getstream [url]', 'get stream URL')
  .parse(process.argv);

  if (!process.argv.slice(2).length) {
    program.outputHelp();
  }







.help()

Output help information and exit immediately.



Examples

var program = require('commander');

program
  .version('0.0.1')
  .option('-C, --chdir <path>', 'change the working directory')
  .option('-c, --config <path>', 'set config path. defaults to ./deploy.conf')
  .option('-T, --no-tests', 'ignore test hook')

program
  .command('setup [env]')
  .description('run setup commands for all envs')
  .option("-s, --setup_mode [mode]", "Which setup mode to use")
  .action(function(env, options){
    var mode = options.setup_mode || "normal";
    env = env || 'all';
    console.log('setup for %s env(s) with %s mode', env, mode);
  });

program
  .command('exec <cmd>')
  .alias('ex')
  .description('execute the given remote cmd')
  .option("-e, --exec_mode <mode>", "Which exec mode to use")
  .action(function(cmd, options){
    console.log('exec "%s" using %s mode', cmd, options.exec_mode);
  }).on('--help', function() {
    console.log('  Examples:');
    console.log();
    console.log('    $ deploy exec sequential');
    console.log('    $ deploy exec async');
    console.log();
  });

program
  .command('*')
  .action(function(env){
    console.log('deploying "%s"', env);
  });

program.parse(process.argv);





More Demos can be found in the examples [https://github.com/tj/commander.js/tree/master/examples] directory.



License

MIT





          

      

      

    

  

  
    

    cliui
    

    
 
  

    
      
          
            
  
cliui

[image: ../../_images/cliui.png]Build Status [https://travis-ci.org/bcoe/cliui]
[image: ../../_images/badge1.svg]Coverage Status [https://coveralls.io/r/bcoe/cliui?branch=]
[image: ../../_images/cliui.svg]NPM version [https://www.npmjs.com/package/cliui]

easily create complex multi-column command-line-interfaces.


Example

var ui = require('cliui')({
  width: 80
})

ui.div('Usage: $0 [command] [options]')

ui.div({
  text: 'Options:',
  padding: [2, 0, 2, 0]
})

ui.div(
  {
    text: "-f, --file",
    width: 40,
    padding: [0, 4, 0, 4]
  },
  {
    text: "the file to load",
    width: 25
  },
  {
    text: "[required]",
    align: 'right'
  }
)

console.log(ui.toString())







Layout DSL

cliui exposes a simple layout DSL:

If you create a single ui.row, passing a string rather than an
object:


	\n: characters will be interpreted as new rows.


	\t: characters will be interpreted as new columns.


	 : characters will be interpreted as padding.




as an example…

var ui = require('./')({
  width: 60
})

ui.div(
  'Usage: node ./bin/foo.js\n' +
  '  <regex>\t  provide a regex\n' +
  '  <glob>\t  provide a glob\t [required]'
)

console.log(ui.toString())





will output:

Usage: node ./bin/foo.js
  <regex>  provide a regex
  <glob>   provide a glob          [required]







Methods

cliui = require('cliui')






cliui({width: integer})

Specify the maximum width of the UI being generated.



cliui({wrap: boolean})

Enable or disable the wrapping of text in a column.



cliui.div(column, column, column)

Create a row with any number of columns, a column
can either be a string, or an object with the following
options:


	width: the width of a column.


	align: alignment, right or center.


	padding: [top, right, bottom, left].






cliui.span(column, column, column)

Similar to div, except the next row will be appended without
a new line being created.






          

      

      

    

  

  
    

    combined-stream
    

    
 
  

    
      
          
            
  
combined-stream

A stream that emits multiple other streams one after another.

NB Currently combined-stream works with streams version 1 only. There is ongoing effort to switch this library to streams version 2. Any help is welcome. :) Meanwhile you can explore other libraries that provide streams2 support with more or less compatibility with combined-stream.


	combined-stream2 [https://www.npmjs.com/package/combined-stream2]: A drop-in streams2-compatible replacement for the combined-stream module.


	multistream [https://www.npmjs.com/package/multistream]: A stream that emits multiple other streams one after another.





Installation

npm install combined-stream







Usage

Here is a simple example that shows how you can use combined-stream to combine
two files into one:

var CombinedStream = require('combined-stream');
var fs = require('fs');

var combinedStream = CombinedStream.create();
combinedStream.append(fs.createReadStream('file1.txt'));
combinedStream.append(fs.createReadStream('file2.txt'));

combinedStream.pipe(fs.createWriteStream('combined.txt'));





While the example above works great, it will pause all source streams until
they are needed. If you don’t want that to happen, you can set pauseStreams
to false:

var CombinedStream = require('combined-stream');
var fs = require('fs');

var combinedStream = CombinedStream.create({pauseStreams: false});
combinedStream.append(fs.createReadStream('file1.txt'));
combinedStream.append(fs.createReadStream('file2.txt'));

combinedStream.pipe(fs.createWriteStream('combined.txt'));





However, what if you don’t have all the source streams yet, or you don’t want
to allocate the resources (file descriptors, memory, etc.) for them right away?
Well, in that case you can simply provide a callback that supplies the stream
by calling a next() function:

var CombinedStream = require('combined-stream');
var fs = require('fs');

var combinedStream = CombinedStream.create();
combinedStream.append(function(next) {
  next(fs.createReadStream('file1.txt'));
});
combinedStream.append(function(next) {
  next(fs.createReadStream('file2.txt'));
});

combinedStream.pipe(fs.createWriteStream('combined.txt'));







API


CombinedStream.create([options])

Returns a new combined stream object. Available options are:


	maxDataSize


	pauseStreams




The effect of those options is described below.



combinedStream.pauseStreams = true

Whether to apply back pressure to the underlaying streams. If set to false,
the underlaying streams will never be paused. If set to true, the
underlaying streams will be paused right after being appended, as well as when
delayedStream.pipe() wants to throttle.



combinedStream.maxDataSize = 2 * 1024 * 1024

The maximum amount of bytes (or characters) to buffer for all source streams.
If this value is exceeded, combinedStream emits an 'error' event.



combinedStream.dataSize = 0

The amount of bytes (or characters) currently buffered by combinedStream.



combinedStream.append(stream)

Appends the given stream to the combinedStream object. If pauseStreams is
set to `true, this stream will also be paused right away.

streams can also be a function that takes one parameter called next. next
is a function that must be invoked in order to provide the next stream, see
example above.

Regardless of how the stream is appended, combined-stream always attaches an
'error' listener to it, so you don’t have to do that manually.

Special case: stream can also be a String or Buffer.



combinedStream.write(data)

You should not call this, combinedStream takes care of piping the appended
streams into itself for you.



combinedStream.resume()

Causes combinedStream to start drain the streams it manages. The function is
idempotent, and also emits a 'resume' event each time which usually goes to
the stream that is currently being drained.



combinedStream.pause();

If combinedStream.pauseStreams is set to false, this does nothing.
Otherwise a 'pause' event is emitted, this goes to the stream that is
currently being drained, so you can use it to apply back pressure.



combinedStream.end();

Sets combinedStream.writable to false, emits an 'end' event, and removes
all streams from the queue.



combinedStream.destroy();

Same as combinedStream.end(), except it emits a 'close' event instead of
'end'.




License

combined-stream is licensed under the MIT license.





          

      

      

    

  

  
    

    2.6.0 / 2014-12-30
    

    
 
  

    
      
          
            
  
2.6.0 / 2014-12-30


	added Command#allowUnknownOption method. Close #138 #318 @doozr @zhiyelee


	Add application description to the help msg. Close #112 @dalssoft






2.5.1 / 2014-12-15


	fixed two bugs incurred by variadic arguments. Close #291 @Quentin01 #302 @zhiyelee






2.5.0 / 2014-10-24


	add support for variadic arguments. Closes #277 @whitlockjc






2.4.0 / 2014-10-17


	fixed a bug on executing the coercion function of subcommands option. Closes #270


	added Command.prototype.name to retrieve command name. Closes #264 #266 @tonylukasavage


	added Command.prototype.opts to retrieve all the options as a simple object of key-value pairs. Closes #262 @tonylukasavage


	fixed a bug on subcommand name. Closes #248 @jonathandelgado


	fixed function normalize doesn’t honor option terminator. Closes #216 @abbr






2.3.0 / 2014-07-16


	add command alias’. Closes PR #210


	fix: Typos. Closes #99


	fix: Unused fs module. Closes #217






2.2.0 / 2014-03-29


	add passing of previous option value


	fix: support subcommands on windows. Closes #142


	Now the defaultValue passed as the second argument of the coercion function.






2.1.0 / 2013-11-21


	add: allow cflag style option params, unit test, fixes #174






2.0.0 / 2013-07-18


	remove input methods (.prompt, .confirm, etc)






1.3.2 / 2013-07-18


	add support for sub-commands to co-exist with the original command






1.3.1 / 2013-07-18


	add quick .runningCommand hack so you can opt-out of other logic when running a sub command






1.3.0 / 2013-07-09


	add EACCES error handling


	fix sub-command –help






1.2.0 / 2013-06-13


	allow “-” hyphen as an option argument


	support for RegExp coercion






1.1.1 / 2012-11-20


	add more sub-command padding


	fix .usage() when args are present. Closes #106






1.1.0 / 2012-11-16


	add git-style executable subcommand support. Closes #94






1.0.5 / 2012-10-09


	fix --name clobbering. Closes #92


	fix examples/help. Closes #89






1.0.4 / 2012-09-03


	add outputHelp() method.






1.0.3 / 2012-08-30


	remove invalid .version() defaulting






1.0.2 / 2012-08-24


	add --foo=bar support [arv]


	fix password on node 0.8.8. Make backward compatible with 0.6 [focusaurus]






1.0.1 / 2012-08-03


	fix issue #56


	fix tty.setRawMode(mode) was moved to tty.ReadStream#setRawMode() (i.e. process.stdin.setRawMode())






1.0.0 / 2012-07-05


	add support for optional option descriptions


	add defaulting of .version() to package.json’s version






0.6.1 / 2012-06-01


	Added: append (yes or no) on confirmation


	Added: allow node.js v0.7.x






0.6.0 / 2012-04-10


	Added .prompt(obj, callback) support. Closes #49


	Added default support to .choose(). Closes #41


	Fixed the choice example






0.5.1 / 2011-12-20


	Fixed password() for recent nodes. Closes #36






0.5.0 / 2011-12-04


	Added sub-command option support [itay]






0.4.3 / 2011-12-04


	Fixed custom help ordering. Closes #32






0.4.2 / 2011-11-24


	Added travis support


	Fixed: line-buffered input automatically trimmed. Closes #31






0.4.1 / 2011-11-18


	Removed listening for “close” on –help






0.4.0 / 2011-11-15


	Added support for --. Closes #24






0.3.3 / 2011-11-14


	Fixed: wait for close event when writing help info [Jerry Hamlet]






0.3.2 / 2011-11-01


	Fixed long flag definitions with values [felixge]






0.3.1 / 2011-10-31


	Changed --version short flag to -V from -v


	Changed .version() so it’s configurable [felixge]






0.3.0 / 2011-10-31


	Added support for long flags only. Closes #18






0.2.1 / 2011-10-24


	“node”: “>= 0.4.x < 0.7.0”. Closes #20






0.2.0 / 2011-09-26


	Allow for defaults that are not just boolean. Default peassignment only occurs for –no-*, optional, and required arguments. [Jim Isaacs]






0.1.0 / 2011-08-24


	Added support for custom --help output






0.0.5 / 2011-08-18


	Changed: when the user enters nothing prompt for password again


	Fixed issue with passwords beginning with numbers [NuckChorris]






0.0.4 / 2011-08-15


	Fixed Commander#args






0.0.3 / 2011-08-15


	Added default option value support






0.0.2 / 2011-08-15


	Added mask support to Command#password(str[, mask], fn)


	Added Command#password(str, fn)






0.0.1 / 2010-01-03


	Initial release







          

      

      

    

  

  
    

    Commander.js
    

    
 
  

    
      
          
            
  
Commander.js

[image: ../../_images/commander.js.svg]Build Status [http://travis-ci.org/tj/commander.js]
[image: ../../_images/commander.svg]NPM Version [https://www.npmjs.org/package/commander]
[image: ../../_images/commander1.svg]NPM Downloads [https://www.npmjs.org/package/commander]

The complete solution for node.js [http://nodejs.org] command-line interfaces, inspired by Ruby’s commander [https://github.com/tj/commander].API documentation [http://tj.github.com/commander.js/]


Installation

$ npm install commander







Option parsing

Options with commander are defined with the .option() method, also serving as documentation for the options. The example below parses args and options from process.argv, leaving remaining args as the program.args array which were not consumed by options.

#!/usr/bin/env node

/**
 * Module dependencies.
 */

var program = require('commander');

program
  .version('0.0.1')
  .option('-p, --peppers', 'Add peppers')
  .option('-P, --pineapple', 'Add pineapple')
  .option('-b, --bbq', 'Add bbq sauce')
  .option('-c, --cheese [type]', 'Add the specified type of cheese [marble]', 'marble')
  .parse(process.argv);

console.log('you ordered a pizza with:');
if (program.peppers) console.log('  - peppers');
if (program.pineapple) console.log('  - pineapple');
if (program.bbq) console.log('  - bbq');
console.log('  - %s cheese', program.cheese);





Short flags may be passed as a single arg, for example -abc is equivalent to -a -b -c. Multi-word options such as “–template-engine” are camel-cased, becoming program.templateEngine etc.



Coercion

function range(val) {
  return val.split('..').map(Number);
}

function list(val) {
  return val.split(',');
}

function collect(val, memo) {
  memo.push(val);
  return memo;
}

function increaseVerbosity(v, total) {
  return total + 1;
}

program
  .version('0.0.1')
  .usage('[options] <file ...>')
  .option('-i, --integer <n>', 'An integer argument', parseInt)
  .option('-f, --float <n>', 'A float argument', parseFloat)
  .option('-r, --range <a>..<b>', 'A range', range)
  .option('-l, --list <items>', 'A list', list)
  .option('-o, --optional [value]', 'An optional value')
  .option('-c, --collect [value]', 'A repeatable value', collect, [])
  .option('-v, --verbose', 'A value that can be increased', increaseVerbosity, 0)
  .parse(process.argv);

console.log(' int: %j', program.integer);
console.log(' float: %j', program.float);
console.log(' optional: %j', program.optional);
program.range = program.range || [];
console.log(' range: %j..%j', program.range[0], program.range[1]);
console.log(' list: %j', program.list);
console.log(' collect: %j', program.collect);
console.log(' verbosity: %j', program.verbose);
console.log(' args: %j', program.args);







Variadic arguments

The last argument of a command can be variadic, and only the last argument.  To make an argument variadic you have to
append ... to the argument name.  Here is an example:

#!/usr/bin/env node

/**
 * Module dependencies.
 */

var program = require('commander');

program
  .version('0.0.1')
  .command('rmdir <dir> [otherDirs...]')
  .action(function (dir, otherDirs) {
    console.log('rmdir %s', dir);
    if (otherDirs) {
      otherDirs.forEach(function (oDir) {
        console.log('rmdir %s', oDir);
      });
    }
  });

program.parse(process.argv);





An Array is used for the value of a variadic argument.  This applies to program.args as well as the argument passed
to your action as demonstrated above.



Git-style sub-commands

// file: ./examples/pm
var program = require('..');

program
  .version('0.0.1')
  .command('install [name]', 'install one or more packages')
  .command('search [query]', 'search with optional query')
  .command('list', 'list packages installed')
  .parse(process.argv);





When .command() is invoked with a description argument, no .action(callback) should be called to handle sub-commands, otherwise there will be an error. This tells commander that you’re going to use separate executables for sub-commands, much like git(1) and other popular tools.The commander will try to find the executable script in current directory with the name scriptBasename-subcommand, like pm-install, pm-search.



Automated –help

The help information is auto-generated based on the information commander already knows about your program, so the following --help info is for free:

 $ ./examples/pizza --help

   Usage: pizza [options]

   An application for pizzas ordering

   Options:

     -h, --help           output usage information
     -V, --version        output the version number
     -p, --peppers        Add peppers
     -P, --pineapple      Add pineapple
     -b, --bbq            Add bbq sauce
     -c, --cheese <type>  Add the specified type of cheese [marble]
     -C, --no-cheese      You do not want any cheese







Custom help

You can display arbitrary -h, --help information
by listening for “–help”. Commander will automatically
exit once you are done so that the remainder of your program
does not execute causing undesired behaviours, for example
in the following executable “stuff” will not output when
--help is used.

#!/usr/bin/env node

/**
 * Module dependencies.
 */

var program = require('commander');

program
  .version('0.0.1')
  .option('-f, --foo', 'enable some foo')
  .option('-b, --bar', 'enable some bar')
  .option('-B, --baz', 'enable some baz');

// must be before .parse() since
// node's emit() is immediate

program.on('--help', function(){
  console.log('  Examples:');
  console.log('');
  console.log('    $ custom-help --help');
  console.log('    $ custom-help -h');
  console.log('');
});

program.parse(process.argv);

console.log('stuff');





Yields the following help output when node script-name.js -h or node script-name.js --help are run:


Usage: custom-help [options]

Options:

  -h, --help     output usage information
  -V, --version  output the version number
  -f, --foo      enable some foo
  -b, --bar      enable some bar
  -B, --baz      enable some baz

Examples:

  $ custom-help --help
  $ custom-help -h







.outputHelp()

Output help information without exiting.



.help()

Output help information and exit immediately.



Examples

var program = require('commander');

program
  .version('0.0.1')
  .option('-C, --chdir <path>', 'change the working directory')
  .option('-c, --config <path>', 'set config path. defaults to ./deploy.conf')
  .option('-T, --no-tests', 'ignore test hook')

program
  .command('setup [env]')
  .description('run setup commands for all envs')
  .option("-s, --setup_mode [mode]", "Which setup mode to use")
  .action(function(env, options){
    var mode = options.setup_mode || "normal";
    env = env || 'all';
    console.log('setup for %s env(s) with %s mode', env, mode);
  });

program
  .command('exec <cmd>')
  .alias('ex')
  .description('execute the given remote cmd')
  .option("-e, --exec_mode <mode>", "Which exec mode to use")
  .action(function(cmd, options){
    console.log('exec "%s" using %s mode', cmd, options.exec_mode);
  }).on('--help', function() {
    console.log('  Examples:');
    console.log();
    console.log('    $ deploy exec sequential');
    console.log('    $ deploy exec async');
    console.log();
  });

program
  .command('*')
  .action(function(env){
    console.log('deploying "%s"', env);
  });

program.parse(process.argv);





You can see more Demos in the examples [https://github.com/tj/commander.js/tree/master/examples] directory.



License

(The MIT License)

Copyright (c) 2011 TJ Holowaychuk <tj@vision-media.ca>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.





          

      

      

    

  

  
    

    constantinople
    

    
 
  

    
      
          
            
  
constantinople

Determine whether a JavaScript expression evaluates to a constant (using acorn).  Here it is assumed to be safe to underestimate how constant something is.

[image: ../../_images/master14.svg]Build Status [https://travis-ci.org/ForbesLindesay/constantinople]
[image: https://img.shields.io/gemnasium/ForbesLindesay/constantinople.svg]Dependency Status [https://gemnasium.com/ForbesLindesay/constantinople]
[image: ../../_images/constantinople.svg]NPM version [https://www.npmjs.org/package/constantinople]


Installation

npm install constantinople







Usage

var isConstant = require('constantinople')

if (isConstant('"foo" + 5')) {
  console.dir(isConstant.toConstant('"foo" + 5'))
}
if (isConstant('Math.floor(10.5)', {Math: Math})) {
  console.dir(isConstant.toConstant('Math.floor(10.5)', {Math: Math}))
}







API


isConstant(src, [constants])

Returns true if src evaluates to a constant, false otherwise.  It will also return false if there is a syntax error, which makes it safe to use on potentially ES6 code.

Constants is an object mapping strings to values, where those values should be treated as constants.  Note that this makes it a pretty bad idea to have Math in there if the user might make use of Math.random and a pretty bad idea to have Date in there.



toConstant(src, [constants])

Returns the value resulting from evaluating src.  This method throws an error if the expression is not constant.  e.g. toConstant("Math.random()") would throw an error.

Constants is an object mapping strings to values, where those values should be treated as constants.  Note that this makes it a pretty bad idea to have Math in there if the user might make use of Math.random and a pretty bad idea to have Date in there.




License

MIT





          

      

      

    

  

  
    

    0.5.2 / 2016-12-08
    

    
 
  

    
      
          
            
  
0.5.2 / 2016-12-08


	Fix parse to accept any linear whitespace character






0.5.1 / 2016-01-17


	perf: enable strict mode






0.5.0 / 2014-10-11


	Add parse function






0.4.0 / 2014-09-21


	Expand non-Unicode filename to the full ISO-8859-1 charset






0.3.0 / 2014-09-20


	Add fallback option


	Add type option






0.2.0 / 2014-09-19


	Reduce ambiguity of file names with hex escape in buggy browsers






0.1.2 / 2014-09-19


	Fix periodic invalid Unicode filename header






0.1.1 / 2014-09-19


	Fix invalid characters appearing in filename* parameter






0.1.0 / 2014-09-18


	Make the filename argument optional






0.0.0 / 2014-09-18


	Initial release







          

      

      

    

  

  
    

    content-disposition
    

    
 
  

    
      
          
            
  
content-disposition

[image: ../../_images/content-disposition.svg]NPM Version [https://npmjs.org/package/content-disposition]
[image: ../../_images/content-disposition1.svg]NPM Downloads [https://npmjs.org/package/content-disposition]
[image: ../../_images/content-disposition2.svg]Node.js Version [https://nodejs.org/en/download]
[image: ../../_images/content-disposition3.svg]Build Status [https://travis-ci.org/jshttp/content-disposition]
[image: ../../_images/content-disposition4.svg]Test Coverage [https://coveralls.io/r/jshttp/content-disposition?branch=master]

Create and parse HTTP Content-Disposition header


Installation

$ npm install content-disposition







API

var contentDisposition = require('content-disposition')






contentDisposition(filename, options)

Create an attachment Content-Disposition header value using the given file name,
if supplied. The filename is optional and if no file name is desired, but you
want to specify options, set filename to undefined.

res.setHeader('Content-Disposition', contentDisposition('∫ maths.pdf'))





note HTTP headers are of the ISO-8859-1 character set. If you are writing this
header through a means different from setHeader in Node.js, you’ll want to specify
the 'binary' encoding in Node.js.


Options

contentDisposition accepts these properties in the options object.


fallback

If the filename option is outside ISO-8859-1, then the file name is actually
stored in a supplemental field for clients that support Unicode file names and
a ISO-8859-1 version of the file name is automatically generated.

This specifies the ISO-8859-1 file name to override the automatic generation or
disables the generation all together, defaults to true.


	A string will specify the ISO-8859-1 file name to use in place of automatic
generation.


	false will disable including a ISO-8859-1 file name and only include the
Unicode version (unless the file name is already ISO-8859-1).


	true will enable automatic generation if the file name is outside ISO-8859-1.




If the filename option is ISO-8859-1 and this option is specified and has a
different value, then the filename option is encoded in the extended field
and this set as the fallback field, even though they are both ISO-8859-1.



type

Specifies the disposition type, defaults to "attachment". This can also be
"inline", or any other value (all values except inline are treated like
attachment, but can convey additional information if both parties agree to
it). The type is normalized to lower-case.





contentDisposition.parse(string)

var disposition = contentDisposition.parse('attachment; filename="EURO rates.txt"; filename*=UTF-8\'\'%e2%82%ac%20rates.txt');





Parse a Content-Disposition header string. This automatically handles extended
(”Unicode”) parameters by decoding them and providing them under the standard
parameter name. This will return an object with the following properties (examples
are shown for the string 'attachment; filename="EURO rates.txt"; filename*=UTF-8\'\'%e2%82%ac%20rates.txt'):


	type: The disposition type (always lower case). Example: 'attachment'


	parameters: An object of the parameters in the disposition (name of parameter
always lower case and extended versions replace non-extended versions). Example:
{filename: "€ rates.txt"}







Examples


Send a file for download

var contentDisposition = require('content-disposition')
var destroy = require('destroy')
var http = require('http')
var onFinished = require('on-finished')

var filePath = '/path/to/public/plans.pdf'

http.createServer(function onRequest(req, res) {
  // set headers
  res.setHeader('Content-Type', 'application/pdf')
  res.setHeader('Content-Disposition', contentDisposition(filePath))

  // send file
  var stream = fs.createReadStream(filePath)
  stream.pipe(res)
  onFinished(res, function (err) {
    destroy(stream)
  })
})








Testing

$ npm test







References


	RFC 2616: Hypertext Transfer Protocol – HTTP/1.1 [https://tools.ietf.org/html/rfc2616]


	RFC 5987: Character Set and Language Encoding for Hypertext Transfer Protocol (HTTP) Header Field Parameters [https://tools.ietf.org/html/rfc5987]


	RFC 6266: Use of the Content-Disposition Header Field in the Hypertext Transfer Protocol (HTTP) [https://tools.ietf.org/html/rfc6266]


	Test Cases for HTTP Content-Disposition header field (RFC 6266) and the Encodings defined in RFCs 2047, 2231 and 5987 [http://greenbytes.de/tech/tc2231/]






License

MIT





          

      

      

    

  

  
    

    1.0.4 / 2017-09-11
    

    
 
  

    
      
          
            
  
1.0.4 / 2017-09-11


	perf: skip parameter parsing when no parameters






1.0.3 / 2017-09-10


	perf: remove argument reassignment






1.0.2 / 2016-05-09


	perf: enable strict mode






1.0.1 / 2015-02-13


	Improve missing Content-Type header error message






1.0.0 / 2015-02-01


	Initial implementation, derived from media-typer@0.3.0







          

      

      

    

  

  
    

    content-type
    

    
 
  

    
      
          
            
  
content-type

[image: ../../_images/content-type.svg]NPM Version [https://npmjs.org/package/content-type]
[image: ../../_images/content-type1.svg]NPM Downloads [https://npmjs.org/package/content-type]
[image: ../../_images/content-type2.svg]Node.js Version [http://nodejs.org/download/]
[image: ../../_images/master15.svg]Build Status [https://travis-ci.org/jshttp/content-type]
[image: ../../_images/master16.svg]Test Coverage [https://coveralls.io/r/jshttp/content-type]

Create and parse HTTP Content-Type header according to RFC 7231


Installation

$ npm install content-type







API

var contentType = require('content-type')






contentType.parse(string)

var obj = contentType.parse('image/svg+xml; charset=utf-8')





Parse a content type string. This will return an object with the following
properties (examples are shown for the string 'image/svg+xml; charset=utf-8'):


	type: The media type (the type and subtype, always lower case).
Example: 'image/svg+xml'


	parameters: An object of the parameters in the media type (name of parameter
always lower case). Example: {charset: 'utf-8'}




Throws a TypeError if the string is missing or invalid.



contentType.parse(req)

var obj = contentType.parse(req)





Parse the content-type header from the given req. Short-cut for
contentType.parse(req.headers['content-type']).

Throws a TypeError if the Content-Type header is missing or invalid.



contentType.parse(res)

var obj = contentType.parse(res)





Parse the content-type header set on the given res. Short-cut for
contentType.parse(res.getHeader('content-type')).

Throws a TypeError if the Content-Type header is missing or invalid.



contentType.format(obj)

var str = contentType.format({type: 'image/svg+xml'})





Format an object into a content type string. This will return a string of the
content type for the given object with the following properties (examples are
shown that produce the string 'image/svg+xml; charset=utf-8'):


	type: The media type (will be lower-cased). Example: 'image/svg+xml'


	parameters: An object of the parameters in the media type (name of the
parameter will be lower-cased). Example: {charset: 'utf-8'}




Throws a TypeError if the object contains an invalid type or parameter names.




License

MIT





          

      

      

    

  

  
    

    0.3.1 / 2016-05-26
    

    
 
  

    
      
          
            
  
0.3.1 / 2016-05-26


	Fix sameSite: true to work with draft-7 clients


	true now sends SameSite=Strict instead of SameSite










0.3.0 / 2016-05-26


	Add sameSite option


	Replaces firstPartyOnly option, never implemented by browsers






	Improve error message when encode is not a function


	Improve error message when expires is not a Date






0.2.4 / 2016-05-20


	perf: enable strict mode


	perf: use for loop in parse


	perf: use string concatination for serialization






0.2.3 / 2015-10-25


	Fix cookie Max-Age to never be a floating point number






0.2.2 / 2015-09-17


	Fix regression when setting empty cookie value


	Ease the new restriction, which is just basic header-level validation






	Fix typo in invalid value errors






0.2.1 / 2015-09-17


	Throw on invalid values provided to serialize


	Ensures the resulting string is a valid HTTP header value










0.2.0 / 2015-08-13


	Add firstPartyOnly option


	Throw better error for invalid argument to parse


	perf: hoist regular expression






0.1.5 / 2015-09-17


	Fix regression when setting empty cookie value


	Ease the new restriction, which is just basic header-level validation






	Fix typo in invalid value errors






0.1.4 / 2015-09-17


	Throw better error for invalid argument to parse


	Throw on invalid values provided to serialize


	Ensures the resulting string is a valid HTTP header value










0.1.3 / 2015-05-19


	Reduce the scope of try-catch deopt


	Remove argument reassignments






0.1.2 / 2014-04-16


	Remove unnecessary files from npm package






0.1.1 / 2014-02-23


	Fix bad parse when cookie value contained a comma


	Fix support for maxAge of 0






0.1.0 / 2013-05-01


	Add decode option


	Add encode option






0.0.6 / 2013-04-08


	Ignore cookie parts missing =






0.0.5 / 2012-10-29


	Return raw cookie value if value unescape errors






0.0.4 / 2012-06-21


	Use encode/decodeURIComponent for cookie encoding/decoding


	Improve server/client interoperability










0.0.3 / 2012-06-06


	Only escape special characters per the cookie RFC






0.0.2 / 2012-06-01


	Fix maxAge option to not throw error






0.0.1 / 2012-05-28


	Add more tests






0.0.0 / 2012-05-28


	Initial release







          

      

      

    

  

  
    

    cookie
    

    
 
  

    
      
          
            
  
cookie

[image: ../../_images/cookie.svg]NPM Version [https://npmjs.org/package/cookie]
[image: ../../_images/cookie1.svg]NPM Downloads [https://npmjs.org/package/cookie]
[image: ../../_images/cookie2.svg]Node.js Version [https://nodejs.org/en/download]
[image: ../../_images/master19.svg]Build Status [https://travis-ci.org/jshttp/cookie]
[image: ../../_images/master20.svg]Test Coverage [https://coveralls.io/r/jshttp/cookie?branch=master]

Basic HTTP cookie parser and serializer for HTTP servers.


Installation

$ npm install cookie







API

var cookie = require('cookie');






cookie.parse(str, options)

Parse an HTTP Cookie header string and returning an object of all cookie name-value pairs.
The str argument is the string representing a Cookie header value and options is an
optional object containing additional parsing options.

var cookies = cookie.parse('foo=bar; equation=E%3Dmc%5E2');
// { foo: 'bar', equation: 'E=mc^2' }






Options

cookie.parse accepts these properties in the options object.


decode

Specifies a function that will be used to decode a cookie’s value. Since the value of a cookie
has a limited character set (and must be a simple string), this function can be used to decode
a previously-encoded cookie value into a JavaScript string or other object.

The default function is the global decodeURIComponent, which will decode any URL-encoded
sequences into their byte representations.

note if an error is thrown from this function, the original, non-decoded cookie value will
be returned as the cookie’s value.





cookie.serialize(name, value, options)

Serialize a cookie name-value pair into a Set-Cookie header string. The name argument is the
name for the cookie, the value argument is the value to set the cookie to, and the options
argument is an optional object containing additional serialization options.

var setCookie = cookie.serialize('foo', 'bar');
// foo=bar






Options

cookie.serialize accepts these properties in the options object.


domain

Specifies the value for the Domain Set-Cookie attribute [https://tools.ietf.org/html/rfc6266#section-5.2.3]. By default, no
domain is set, and most clients will consider the cookie to apply to only the current domain.



encode

Specifies a function that will be used to encode a cookie’s value. Since value of a cookie
has a limited character set (and must be a simple string), this function can be used to encode
a value into a string suited for a cookie’s value.

The default function is the global ecodeURIComponent, which will encode a JavaScript string
into UTF-8 byte sequences and then URL-encode any that fall outside of the cookie range.



expires

Specifies the Date object to be the value for the Expires Set-Cookie attribute [https://tools.ietf.org/html/rfc6266#section-5.2.1].
By default, no expiration is set, and most clients will consider this a “non-persistent cookie” and
will delete it on a condition like exiting a web browser application.

note the cookie storage model specification [https://tools.ietf.org/html/rfc6266#section-5.3] states that if both expires and
magAge are set, then maxAge takes precedence, but it is possiblke not all clients by obey this,
so if both are set, they should point to the same date and time.



httpOnly

Specifies the boolean value for the [HttpOnly Set-Cookie attribute][rfc-6266-5.2.6]. When truthy,
the HttpOnly attribute is set, otherwise it is not. By default, the HttpOnly attribute is not set.

note be careful when setting this to true, as compliant clients will not allow client-side
JavaScript to see the cookie in document.cookie.



maxAge

Specifies the number (in seconds) to be the value for the Max-Age Set-Cookie attribute [https://tools.ietf.org/html/rfc6266#section-5.2.2].
The given number will be converted to an integer by rounding down. By default, no maximum age is set.

note the cookie storage model specification [https://tools.ietf.org/html/rfc6266#section-5.3] states that if both expires and
magAge are set, then maxAge takes precedence, but it is possiblke not all clients by obey this,
so if both are set, they should point to the same date and time.



path

Specifies the value for the Path Set-Cookie attribute [https://tools.ietf.org/html/rfc6266#section-5.2.4]. By default, the path
is considered the “default path” [https://tools.ietf.org/html/rfc6266#section-5.1.4]. By default, no maximum age is set, and most
clients will consider this a “non-persistent cookie” and will delete it on a condition like exiting
a web browser application.



sameSite

Specifies the boolean or string to be the value for the SameSite Set-Cookie attribute [https://tools.ietf.org/html/draft-west-first-party-cookies-07].


	true will set the SameSite attribute to Strict for strict same site enforcement.


	false will not set the SameSite attribute.


	'lax' will set the SameSite attribute to Lax for lax same site enforcement.


	'strict' will set the SameSite attribute to Strict for strict same site enforcement.




More information about the different enforcement levels can be found in the specification
https://tools.ietf.org/html/draft-west-first-party-cookies-07#section-4.1.1

note This is an attribute that has not yet been fully standardized, and may change in the future.
This also means many clients may ignore this attribute until they understand it.



secure

Specifies the boolean value for the [Secure Set-Cookie attribute][rfc-6266-5.2.5]. When truthy,
the Secure attribute is set, otherwise it is not. By default, the Secure attribute is not set.

note be careful when setting this to true, as compliant clients will not send the cookie back to
the server in the future if the browser does not have an HTTPS connection.






Example

The following example uses this module in conjunction with the Node.js core HTTP server
to prompt a user for their name and display it back on future visits.

var cookie = require('cookie');
var escapeHtml = require('escape-html');
var http = require('http');
var url = require('url');

function onRequest(req, res) {
  // Parse the query string
  var query = url.parse(req.url, true, true).query;

  if (query && query.name) {
    // Set a new cookie with the name
    res.setHeader('Set-Cookie', cookie.serialize('name', String(query.name), {
      httpOnly: true,
      maxAge: 60 * 60 * 24 * 7 // 1 week
    }));

    // Redirect back after setting cookie
    res.statusCode = 302;
    res.setHeader('Location', req.headers.referer || '/');
    res.end();
    return;
  }

  // Parse the cookies on the request
  var cookies = cookie.parse(req.headers.cookie || '');

  // Get the visitor name set in the cookie
  var name = cookies.name;

  res.setHeader('Content-Type', 'text/html; charset=UTF-8');

  if (name) {
    res.write('<p>Welcome back, <b>' + escapeHtml(name) + '</b>!</p>');
  } else {
    res.write('<p>Hello, new visitor!</p>');
  }

  res.write('<form method="GET">');
  res.write('<input placeholder="enter your name" name="name"> <input type="submit" value="Set Name">');
  res.end('</form');
}

http.createServer(onRequest).listen(3000);







Testing

$ npm test







References


	RFC 6266: HTTP State Management Mechanism [https://tools.ietf.org/html/rfc6266]


	Same-site Cookies [https://tools.ietf.org/html/draft-west-first-party-cookies-07]






License

MIT





          

      

      

    

  

  
    

    1.4.4 / 2019-02-12
    

    
 
  

    
      
          
            
  
1.4.4 / 2019-02-12


	perf: normalize secret argument only once






1.4.3 / 2016-05-26


	deps: cookie@0.3.1


	perf: use for loop in parse










1.4.2 / 2016-05-20


	deps: cookie@0.2.4


	perf: enable strict mode


	perf: use for loop in parse


	perf: use string concatination for serialization










1.4.1 / 2016-01-11


	deps: cookie@0.2.3


	perf: enable strict mode






1.4.0 / 2015-09-18


	Accept array of secrets in addition to a single secret


	Fix JSONCookie to return undefined for non-string arguments


	Fix signedCookie to return undefined for non-string arguments


	deps: cookie@0.2.2






1.3.5 / 2015-05-19


	deps: cookie@0.1.3


	Slight optimizations










1.3.4 / 2015-02-15


	deps: cookie-signature@1.0.6






1.3.3 / 2014-09-05


	deps: cookie-signature@1.0.5






1.3.2 / 2014-06-26


	deps: cookie-signature@1.0.4


	fix for timing attacks










1.3.1 / 2014-06-17


	actually export signedCookie






1.3.0 / 2014-06-17


	add signedCookie export for single cookie unsigning






1.2.0 / 2014-06-17


	export parsing functions


	req.cookies and req.signedCookies are now plain objects


	slightly faster parsing of many cookies






1.1.0 / 2014-05-12


	Support for NodeJS version 0.8


	deps: cookie@0.1.2


	Fix for maxAge == 0


	made compat with expires field


	tweak maxAge NaN error message










1.0.1 / 2014-02-20


	add missing dependencies






1.0.0 / 2014-02-15


	Genesis from connect







          

      

      

    

  

  
    

    cookie-parser
    

    
 
  

    
      
          
            
  
cookie-parser

[image: ../../_images/cookie-parser.svg]NPM Version [https://npmjs.org/package/cookie-parser]
[image: ../../_images/cookie-parser1.svg]NPM Downloads [https://npmjs.org/package/cookie-parser]
[image: ../../_images/master17.svg]Build Status [https://travis-ci.org/expressjs/cookie-parser]
[image: ../../_images/master18.svg]Test Coverage [https://coveralls.io/r/expressjs/cookie-parser?branch=master]

Parse Cookie header and populate req.cookies with an object keyed by the cookie
names. Optionally you may enable signed cookie support by passing a secret string,
which assigns req.secret so it may be used by other middleware.


Installation

$ npm install cookie-parser







API

var express = require('express')
var cookieParser = require('cookie-parser')

var app = express()
app.use(cookieParser())






cookieParser(secret, options)


	secret a string or array used for signing cookies. This is optional and if not specified, will not parse signed cookies. If a string is provided, this is used as the secret. If an array is provided, an attempt will be made to unsign the cookie with each secret in order.


	options an object that is passed to cookie.parse as the second option. See cookie [https://www.npmjs.org/package/cookie] for more information.


	decode a function to decode the value of the cookie










cookieParser.JSONCookie(str)

Parse a cookie value as a JSON cookie. This will return the parsed JSON value if it was a JSON cookie, otherwise it will return the passed value.



cookieParser.JSONCookies(cookies)

Given an object, this will iterate over the keys and call JSONCookie on each value, replacing the original value with the parsed value. This returns the same object that was passed in.



cookieParser.signedCookie(str, secret)

Parse a cookie value as a signed cookie. This will return the parsed unsigned value if it was a signed cookie and the signature was valid. If the value was not signed, the original value is returned. If the value was signed but the signature could not be validated, false is returned.

The secret argument can be an array or string. If a string is provided, this is used as the secret. If an array is provided, an attempt will be made to unsign the cookie with each secret in order.



cookieParser.signedCookies(cookies, secret)

Given an object, this will iterate over the keys and check if any value is a signed cookie. If it is a signed cookie and the signature is valid, the key will be deleted from the object and added to the new object that is returned.

The secret argument can be an array or string. If a string is provided, this is used as the secret. If an array is provided, an attempt will be made to unsign the cookie with each secret in order.




Example

var express = require('express')
var cookieParser = require('cookie-parser')

var app = express()
app.use(cookieParser())

app.get('/', function (req, res) {
  // Cookies that have not been signed
  console.log('Cookies: ', req.cookies)

  // Cookies that have been signed
  console.log('Signed Cookies: ', req.signedCookies)
})

app.listen(8080)

// curl command that sends an HTTP request with two cookies
// curl http://127.0.0.1:8080 --cookie "Cho=Kim;Greet=Hello"






MIT Licensed






          

      

      

    

  

  
    

    1.0.6 / 2015-02-03
    

    
 
  

    
      
          
            
  
1.0.6 / 2015-02-03


	use npm test instead of make test to run tests


	clearer assertion messages when checking input






1.0.5 / 2014-09-05


	add license to package.json






1.0.4 / 2014-06-25


	corrected avoidance of timing attacks (thanks @tenbits!)






1.0.3 / 2014-01-28


	[incorrect] fix for timing attacks






1.0.2 / 2014-01-28


	fix missing repository warning


	fix typo in test






1.0.1 / 2013-04-15


	Revert “Changed underlying HMAC algo. to sha512.”


	Revert “Fix for timing attacks on MAC verification.”






0.0.1 / 2010-01-03


	Initial release







          

      

      

    

  

  
    

    cookie-signature
    

    
 
  

    
      
          
            
  
cookie-signature

Sign and unsign cookies.


Example

var cookie = require('cookie-signature');

var val = cookie.sign('hello', 'tobiiscool');
val.should.equal('hello.DGDUkGlIkCzPz+C0B064FNgHdEjox7ch8tOBGslZ5QI');

var val = cookie.sign('hello', 'tobiiscool');
cookie.unsign(val, 'tobiiscool').should.equal('hello');
cookie.unsign(val, 'luna').should.be.false;







License

(The MIT License)

Copyright (c) 2012 LearnBoost <tj@learnboost.com>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.





          

      

      

    

  

  
    

    core-util-is
    

    
 
  

    
      
          
            
  
core-util-is

The util.is* functions introduced in Node v0.12.




          

      

      

    

  

  
    

    contributing to cors
    

    
 
  

    
      
          
            
  
contributing to cors

CORS is a node.js package for providing a connect [http://www.senchalabs.org/connect/]/express [http://expressjs.com/] middleware that can be used to enable CORS [http://en.wikipedia.org/wiki/Cross-origin_resource_sharing] with various options. Learn more about the project in the README.


The CORS Spec

http://www.w3.org/TR/cors/



Pull Requests Welcome


	Include 'use strict'; in every javascript file.


	2 space indentation.


	Please run the testing steps below before submitting.






Testing

$ npm install
$ npm test







Interactive Testing Harness

http://node-cors-client.herokuapp.com

Related git repositories:


	https://github.com/TroyGoode/node-cors-server


	https://github.com/TroyGoode/node-cors-client






License

MIT License [http://www.opensource.org/licenses/mit-license.php]





          

      

      

    

  

  
    

    2.8.5 / 2018-11-04
    

    
 
  

    
      
          
            
  
2.8.5 / 2018-11-04


	Fix setting maxAge option to 0






2.8.4 / 2017-07-12


	Work-around Safari bug in default pre-flight response






2.8.3 / 2017-03-29


	Fix error when options delegate missing methods option






2.8.2 / 2017-03-28


	Fix error when frozen options are passed


	Send “Vary: Origin” when using regular expressions


	Send “Vary: Access-Control-Request-Headers” when dynamic allowedHeaders






2.8.1 / 2016-09-08

This release only changed documentation.



2.8.0 / 2016-08-23


	Add optionsSuccessStatus option






2.7.2 / 2016-08-23


	Fix error when Node.js running in strict mode






2.7.1 / 2015-05-28


	Move module into expressjs organization






2.7.0 / 2015-05-28


	Allow array of matching condition as origin option


	Allow regular expression as origin option






2.6.1 / 2015-05-28


	Update license in package.json






2.6.0 / 2015-04-27


	Add preflightContinue option


	Fix “Vary: Origin” header added for “*”







          

      

      

    

  

  
    

    cors
    

    
 
  

    
      
          
            
  
cors

[image: ../../_images/cors.svg]NPM Version [https://npmjs.org/package/cors]
[image: ../../_images/cors1.svg]NPM Downloads [https://npmjs.org/package/cors]
[image: ../../_images/master21.svg]Build Status [https://travis-ci.org/expressjs/cors]
[image: ../../_images/master22.svg]Test Coverage [https://coveralls.io/r/expressjs/cors?branch=master]

CORS is a node.js package for providing a Connect [http://www.senchalabs.org/connect/]/Express [http://expressjs.com/] middleware that can be used to enable CORS [http://en.wikipedia.org/wiki/Cross-origin_resource_sharing] with various options.

Follow me (@troygoode) on Twitter! [https://twitter.com/intent/user?screen_name=troygoode]


	Installation


	Usage


	Simple Usage


	Enable CORS for a Single Route


	Configuring CORS


	Configuring CORS Asynchronously


	Enabling CORS Pre-Flight






	Configuration Options


	Demo


	License


	Author





Installation

This is a Node.js [https://nodejs.org/en/] module available through the
npm registry [https://www.npmjs.com/]. Installation is done using the
npm install command [https://docs.npmjs.com/getting-started/installing-npm-packages-locally]:

$ npm install cors







Usage


Simple Usage (Enable All CORS Requests)

var express = require('express')
var cors = require('cors')
var app = express()

app.use(cors())

app.get('/products/:id', function (req, res, next) {
  res.json({msg: 'This is CORS-enabled for all origins!'})
})

app.listen(80, function () {
  console.log('CORS-enabled web server listening on port 80')
})







Enable CORS for a Single Route

var express = require('express')
var cors = require('cors')
var app = express()

app.get('/products/:id', cors(), function (req, res, next) {
  res.json({msg: 'This is CORS-enabled for a Single Route'})
})

app.listen(80, function () {
  console.log('CORS-enabled web server listening on port 80')
})







Configuring CORS

var express = require('express')
var cors = require('cors')
var app = express()

var corsOptions = {
  origin: 'http://example.com',
  optionsSuccessStatus: 200 // some legacy browsers (IE11, various SmartTVs) choke on 204
}

app.get('/products/:id', cors(corsOptions), function (req, res, next) {
  res.json({msg: 'This is CORS-enabled for only example.com.'})
})

app.listen(80, function () {
  console.log('CORS-enabled web server listening on port 80')
})







Configuring CORS w/ Dynamic Origin

var express = require('express')
var cors = require('cors')
var app = express()

var whitelist = ['http://example1.com', 'http://example2.com']
var corsOptions = {
  origin: function (origin, callback) {
    if (whitelist.indexOf(origin) !== -1) {
      callback(null, true)
    } else {
      callback(new Error('Not allowed by CORS'))
    }
  }
}

app.get('/products/:id', cors(corsOptions), function (req, res, next) {
  res.json({msg: 'This is CORS-enabled for a whitelisted domain.'})
})

app.listen(80, function () {
  console.log('CORS-enabled web server listening on port 80')
})





If you do not want to block REST tools or server-to-server requests,
add a !origin check in the origin function like so:

var corsOptions = {
  origin: function (origin, callback) {
    if (whitelist.indexOf(origin) !== -1 || !origin) {
      callback(null, true)
    } else {
      callback(new Error('Not allowed by CORS'))
    }
  }
}







Enabling CORS Pre-Flight

Certain CORS requests are considered ‘complex’ and require an initial
OPTIONS request (called the “pre-flight request”). An example of a
‘complex’ CORS request is one that uses an HTTP verb other than
GET/HEAD/POST (such as DELETE) or that uses custom headers. To enable
pre-flighting, you must add a new OPTIONS handler for the route you want
to support:

var express = require('express')
var cors = require('cors')
var app = express()

app.options('/products/:id', cors()) // enable pre-flight request for DELETE request
app.del('/products/:id', cors(), function (req, res, next) {
  res.json({msg: 'This is CORS-enabled for all origins!'})
})

app.listen(80, function () {
  console.log('CORS-enabled web server listening on port 80')
})





You can also enable pre-flight across-the-board like so:

app.options('*', cors()) // include before other routes







Configuring CORS Asynchronously

var express = require('express')
var cors = require('cors')
var app = express()

var whitelist = ['http://example1.com', 'http://example2.com']
var corsOptionsDelegate = function (req, callback) {
  var corsOptions;
  if (whitelist.indexOf(req.header('Origin')) !== -1) {
    corsOptions = { origin: true } // reflect (enable) the requested origin in the CORS response
  } else {
    corsOptions = { origin: false } // disable CORS for this request
  }
  callback(null, corsOptions) // callback expects two parameters: error and options
}

app.get('/products/:id', cors(corsOptionsDelegate), function (req, res, next) {
  res.json({msg: 'This is CORS-enabled for a whitelisted domain.'})
})

app.listen(80, function () {
  console.log('CORS-enabled web server listening on port 80')
})








Configuration Options


	origin: Configures the Access-Control-Allow-Origin CORS header. Possible values:


	Boolean - set origin to true to reflect the request origin [http://tools.ietf.org/html/draft-abarth-origin-09], as defined by req.header('Origin'), or set it to false to disable CORS.


	String - set origin to a specific origin. For example if you set it to "http://example.com" only requests from “http://example.com” will be allowed.


	RegExp - set origin to a regular expression pattern which will be used to test the request origin. If it’s a match, the request origin will be reflected. For example the pattern /example\.com$/ will reflect any request that is coming from an origin ending with “example.com”.


	Array - set origin to an array of valid origins. Each origin can be a String or a RegExp. For example ["http://example1.com", /\.example2\.com$/] will accept any request from “http://example1.com” or from a subdomain of “example2.com”.


	Function - set origin to a function implementing some custom logic. The function takes the request origin as the first parameter and a callback (which expects the signature err [object], allow [bool]) as the second.






	methods: Configures the Access-Control-Allow-Methods CORS header. Expects a comma-delimited string (ex: ‘GET,PUT,POST’) or an array (ex: ['GET', 'PUT', 'POST']).


	allowedHeaders: Configures the Access-Control-Allow-Headers CORS header. Expects a comma-delimited string (ex: ‘Content-Type,Authorization’) or an array (ex: ['Content-Type', 'Authorization']). If not specified, defaults to reflecting the headers specified in the request’s Access-Control-Request-Headers header.


	exposedHeaders: Configures the Access-Control-Expose-Headers CORS header. Expects a comma-delimited string (ex: ‘Content-Range,X-Content-Range’) or an array (ex: ['Content-Range', 'X-Content-Range']). If not specified, no custom headers are exposed.


	credentials: Configures the Access-Control-Allow-Credentials CORS header. Set to true to pass the header, otherwise it is omitted.


	maxAge: Configures the Access-Control-Max-Age CORS header. Set to an integer to pass the header, otherwise it is omitted.


	preflightContinue: Pass the CORS preflight response to the next handler.


	optionsSuccessStatus: Provides a status code to use for successful OPTIONS requests, since some legacy browsers (IE11, various SmartTVs) choke on 204.




The default configuration is the equivalent of:

{
  "origin": "*",
  "methods": "GET,HEAD,PUT,PATCH,POST,DELETE",
  "preflightContinue": false,
  "optionsSuccessStatus": 204
}





For details on the effect of each CORS header, read this [http://www.html5rocks.com/en/tutorials/cors/] article on HTML5 Rocks.



Demo

A demo that illustrates CORS working (and not working) using jQuery is available here: http://node-cors-client.herokuapp.com/

Code for that demo can be found here:


	Client: https://github.com/TroyGoode/node-cors-client


	Server: https://github.com/TroyGoode/node-cors-server






License

MIT License [http://www.opensource.org/licenses/mit-license.php]



Author

Troy Goode [https://github.com/TroyGoode] (troygoode@gmail.com)





          

      

      

    

  

  
    

    1.0.7 / 2012-11-21
    

    
 
  

    
      
          
            
  
1.0.7 / 2012-11-21


	fix component.json






1.0.4 / 2012-11-15


	update css-stringify






1.0.3 / 2012-09-01


	add component support






0.0.1 / 2010-01-03


	Initial release







          

      

      

    

  

  
    

    css
    

    
 
  

    
      
          
            
  
css

CSS parser / stringifier using css-parse [https://github.com/visionmedia/css-parse] and css-stringify [https://github.com/visionmedia/css-stringify].


Installation

$ npm install css







Example

js:

var css = require('css')
var obj = css.parse('tobi { name: "tobi" }')
css.stringify(obj);





object returned by .parse():

{
  "stylesheet": {
    "rules": [
      {
        "selector": "tobi",
        "declarations": [
          {
            "property": "name",
            "value": "tobi"
          }
        ]
      }
    ]
  }
}





string returned by .stringify(ast):

tobi {
  name: tobi;
}





string returned by .stringify(ast, { compress: true }):

tobi{name:tobi}







License

(The MIT License)

Copyright (c) 2012 TJ Holowaychuk <tj@vision-media.ca>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.





          

      

      

    

  

  
    

    1.0.4 / 2012-09-17
    

    
 
  

    
      
          
            
  
1.0.4 / 2012-09-17


	fix keyframes float percentages


	fix an issue with comments containing slashes.






1.0.3 / 2012-09-01


	add component support


	fix unquoted data uris [rstacruz]


	fix keyframe names with no whitespace [rstacruz]


	fix excess semicolon support [rstacruz]






1.0.2 / 2012-09-01


	fix IE property hack support [rstacruz]


	fix quoted strings in declarations [rstacruz]






1.0.1 / 2012-07-26


	change “selector” to “selectors” array






1.0.0 / 2010-01-03


	Initial release







          

      

      

    

  

  
    

    css-parse
    

    
 
  

    
      
          
            
  
css-parse

CSS parser.


Example

js:

var parse = require('css-parse')
parse('tobi { name: "tobi" }')





object returned:

{
  "stylesheet": {
    "rules": [
      {
        "selectors": ["tobi"],
        "declarations": [
          {
            "property": "name",
            "value": "tobi"
          }
        ]
      }
    ]
  }
}







Performance

Parsed 15,000 lines of CSS (2mb) in 40ms on my macbook air.



License

(The MIT License)

Copyright (c) 2012 TJ Holowaychuk <tj@vision-media.ca>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.





          

      

      

    

  

  
    

    1.0.5 / 2013-03-15
    

    
 
  

    
      
          
            
  
1.0.5 / 2013-03-15


	fix indentation of multiple selectors in @media. Closes #11






1.0.4 / 2012-11-15


	fix indentation






1.0.3 / 2012-09-04


	add @charset support [rstacruz]






1.0.2 / 2012-09-01


	add component support






1.0.1 / 2012-07-26


	add “selectors” array support






0.0.1 / 2010-01-03


	Initial release







          

      

      

    

  

  
    

    css-stringify
    

    
 
  

    
      
          
            
  
css-stringify

CSS compiler using the AST provided by css-parse [https://github.com/visionmedia/css-parse].


Performance

Formats 15,000 lines of CSS (2mb) in 23ms on my macbook air.



License

(The MIT License)

Copyright (c) 2012 TJ Holowaychuk <tj@vision-media.ca>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.





          

      

      

    

  

  
    

    node-dashdash changelog
    

    
 
  

    
      
          
            
  
node-dashdash changelog


not yet released

(nothing yet)



1.14.1


	[issue #30] Change the output used by dashdash’s Bash completion support to
indicate “there are no completions for this argument” to cope with different
sorting rules on different Bash/platforms. For example:

  $ triton -v -p test2 package get <TAB>          # before
  ##-no -tritonpackage- completions-##

  $ triton -v -p test2 package get <TAB>          # after
  ##-no-completion- -results-##











1.14.0


	New synopsisFromOpt(<option spec>) function. This will be used by
node-cmdln [https://github.com/trentm/node-cmdln] to put together a synopsis
of options for a command. Some examples:

  > synopsisFromOpt({names: ['help', 'h'], type: 'bool'});
  '[ --help | -h ]'
  > synopsisFromOpt({name: 'file', type: 'string', helpArg: 'FILE'});
  '[ --file=FILE ]'











1.13.1


	[issue #20] bashCompletionSpecFromOptions breaks on an options array with
an empty-string group.






1.13.0


	Update assert-plus dep to 1.x to get recent fixes (particularly for
assert.optional*).


	Drop testing (and official support in packages.json#engines) for node 0.8.x.
Add testing against node 5.x and 4.x with make testall.


	[pull #16] Change the positiveInteger type to NOT accept zero (0).
For those who might need the old behaviour, see
“examples/custom-option-intGteZero.js”.  (By Dave Pacheco.)






1.12.2


	Bash completion: Add argtypes to specify the types of positional args.
E.g. this would allow you to have an ssh command with argtypes = ['host', 'cmd'] for bash completion. You then have to provide Bash functions to
handle completing those types via the specExtra arg. See
“examples/ddcompletion.js” for an example.


	Bash completion: Tweak so that options or only offered as completions when
there is a leading ‘-’. E.g. mytool <TAB> does NOT offer options, mytool -<TAB> does. Without this, a tool with options would never be able to
fallback to Bash’s “default” completion. For example ls <TAB> wouldn’t
result in filename completion. Now it will.


	Bash completion: A workaround for not being able to explicitly have no
completion results. Because dashdash’s completion uses complete -o default,
we fallback to Bash’s “default” completion (typically for filename
completion). Before this change, an attempt to explicitly say “there are
no completions that match” would unintentionally trigger filename completion.
Instead as a workaround we return:

  $ ddcompletion --none <TAB>         # the 'none' argtype
  ##-no           completions-##

  $ ddcompletion                      # a custom 'fruit' argtype
  apple   banana  orange
  $ ddcompletion z
  ##-no           -fruit-         completions-##





This is a bit of a hack, but IMO a better experience than the surprise
of matching a local filename beginning with ‘z’, which isn’t, in this
case, a “fruit”.







1.12.1


	Bash completion: Document <option spec>.completionType. Add includeHidden
option to bashCompletionSpecFromOptions(). Add support for dealing with
hidden subcmds.






1.12.0


	Support for generating Bash completion files. See the “Bash completion”
section of the README.md and “examples/ddcompletion.js” for an example.






1.11.0


	Add the arrayFlatten boolean option to dashdash.addOptionType used for
custom option types. This allows one to create an arrayOf... option type
where each usage of the option can return multiple results. For example:

  node mytool.js --foo a,b --foo c





We could define an option type for --foo such that
opts.foo = ['a', 'b', 'c']. See
“examples/custom-option-arrayOfCommaSepString.js”
for an example.







1.10.1


	Trim the published package to the minimal bits. Before: 24K tarball, 144K unpacked.
After: 12K tarball, 48K unpacked. npm won’t let me drop the README.md. :)






1.10.0


	[issue #9] Support includeDefault in help config (similar to includeEnv) to have a
note of an option’s default value, if any, in help output.


	[issue #11] Fix option group breakage introduced in v1.9.0.






1.9.0


	[issue #10] Custom option types added with addOptionType can specify a
“default” value. See “examples/custom-option-fruit.js”.






1.8.0


	Support hidden: true in an option spec to have help output exclude this
option.






1.7.3


	[issue #8] Fix parsing of a short option group when one of the
option takes an argument. For example, consider tail with
a -f boolean option and a -n option that takes a number
argument. This should parse:

  tail -fn5





Before this change, that would not parse correctly.
It is suspected that this was introduced in version 1.4.0
(with commit 656fa8bc71c372ebddad0a7026bd71611e2ec99a).







1.7.2


	Known issues: #8


	Exclude ‘tools/’ dir in packages published to npm.






1.7.1


	Known issues: #8


	Support an option group empty string value:

  ...
  { group: '' },
  ...





to render as a blank line in option help. This can help separate loosely
related sets of options without resorting to a title for option groups.







1.7.0


	Known issues: #8


	[pull #7] Support for <parser>.help({helpWrap: false, ...}) option to be able
to fully control the formatting for option help (by Patrick Mooney) helpWrap: false can also be set on individual options in the option objects, e.g.:

  var options = [
      {
        names: ['foo'],
        type: 'string',
        helpWrap: false,
        help: 'long help with\n  newlines' +
          '\n  spaces\n  and such\nwill render correctly'
      },
      ...
  ];











1.6.0


	Known issues: #8


	[pull #6] Support headings between groups of options (by Joshua M. Clulow)
so that this code:

  var options = [
      { group: 'Armament Options' },
      { names: [ 'weapon', 'w' ], type: 'string' },
      { group: 'General Options' },
      { names: [ 'help', 'h' ], type: 'bool' }
  ];
  ...





will give you this help output:

  ...
    Armament Options:
      -w, --weapon

    General Options:
      -h, --help
  ...











1.5.0


	Known issues: #8


	Add support for adding custom option types. “examples/custom-option-duration.js”
shows an example adding a “duration” option type.

  $ node custom-option-duration.js -t 1h
  duration: 3600000 ms
  $ node custom-option-duration.js -t 1s
  duration: 1000 ms
  $ node custom-option-duration.js -t 5d
  duration: 432000000 ms
  $ node custom-option-duration.js -t bogus
  custom-option-duration.js: error: arg for "-t" is not a valid duration: "bogus"





A custom option type is added via:

  var dashdash = require('dashdash');
  dashdash.addOptionType({
      name: '...',
      takesArg: true,
      helpArg: '...',
      parseArg: function (option, optstr, arg) {
          ...
      }
  });







	[issue #4] Add date and arrayOfDate option types. They accept these date
formats: epoch second times (e.g. 1396031701) and ISO 8601 format:
YYYY-MM-DD[THH:MM:SS[.sss][Z]] (e.g. “2014-03-28”,
“2014-03-28T18:35:01.489Z”). See “examples/date.js” for an example usage.

  $ node examples/date.js -s 2014-01-01 -e $(date +%s)
  start at 2014-01-01T00:00:00.000Z
  end at 2014-03-29T04:26:18.000Z











1.4.0


	Known issues: #8


	[pull #2, pull #3] Add a allowUnknown: true option on createParser to
allow unknown options to be passed through as opts._args instead of parsing
throwing an exception (by https://github.com/isaacs).

See ‘allowUnknown’ in the README for a subtle caveat.







1.3.2


	Fix a subtlety where a bool option using both env and default didn’t
work exactly correctly. If default: false then all was fine (by luck).
However, if you had an option like this:

  options: [ {
      names: ['verbose', 'v'],
      env: 'FOO_VERBOSE',
      'default': true,    // <--- this
      type: 'bool'
  } ],





wanted FOO_VERBOSE=0 to make the option false, then you need the fix
in this version of dashdash.







1.3.1


	[issue #1] Fix an envvar not winning over an option ‘default’. Previously
an option with both default and env would never take a value from the
environment variable. E.g. FOO_FILE would never work here:

  options: [ {
      names: ['file', 'f'],
      env: 'FOO_FILE',
      'default': 'default.file',
      type: 'string'
  } ],











1.3.0


	[Backward incompatible change for boolean envvars] Change the
interpretation of environment variables for boolean options to consider ‘0’
to be false. Previous to this any value to the envvar was considered
true – which was quite misleading. Example:

  $ FOO_VERBOSE=0 node examples/foo.js
  # opts: { verbose: [ false ],
    _order: [ { key: 'verbose', value: false, from: 'env' } ],
    _args: [] }
  # args: []











1.2.1


	Fix for parse.help({includeEnv: true, ...}) handling to ensure that an
option with an env but no help still has the “Environment: …”
output. E.g.:

  { names: ['foo'], type: 'string', env: 'FOO' }

  ...

  --foo=ARG      Environment: FOO=ARG











1.2.0


	Transform the option key on the opts object returned from
<parser>.parse() for convenience. Currently this is just
s/-/_/g, e.g. ‘–dry-run’ -> opts.dry_run. This allow one to use hyphen
in option names (common) but not have to do silly things like
opt["dry-run"] to access the parsed results.






1.1.0


	Environment variable integration. Envvars can be associated with an option,
then option processing will fallback to using that envvar if defined and
if the option isn’t specified in argv. See the “Environment variable
integration” section in the README.


	Change the <parser>.parse() signature to take a single object with keys
for arguments. The old signature is still supported.


	dashdash.createParser(CONFIG) alternative to new dashdash.Parser(CONFIG)
a la many node-land APIs.






1.0.2


	Add “positiveInteger” and “arrayOfPositiveInteger” option types that only
accept positive integers.


	Add “integer” and “arrayOfInteger” option types that accepts only integers.
Note that, for better or worse, these do NOT accept: “0x42” (hex), “1e2”
(with exponent) or “1.”, “3.0” (floats).






1.0.1


	Fix not modifying the given option spec objects (which breaks creating
a Parser with them more than once).






1.0.0

First release.





          

      

      

    

  

  
    

    Install
    

    
 
  

    
      
          
            
  A light, featureful and explicit option parsing library for node.js.

Why another one? See below. tl;dr: The others I’ve tried are one of
too loosey goosey (not explicit), too big/too many deps, or ill specified.
YMMV.

Follow @trentmick
for updates to node-dashdash.


Install

npm install dashdash







Usage

var dashdash = require('dashdash');

// Specify the options. Minimally `name` (or `names`) and `type`
// must be given for each.
var options = [
    {
        // `names` or a single `name`. First element is the `opts.KEY`.
        names: ['help', 'h'],
        // See "Option specs" below for types.
        type: 'bool',
        help: 'Print this help and exit.'
    }
];

// Shortcut form. As called it infers `process.argv`. See below for
// the longer form to use methods like `.help()` on the Parser object.
var opts = dashdash.parse({options: options});

console.log("opts:", opts);
console.log("args:", opts._args);







Longer Example

A more realistic starter script “foo.js” is as follows.
This also shows using parser.help() for formatted option help.

var dashdash = require('./lib/dashdash');

var options = [
    {
        name: 'version',
        type: 'bool',
        help: 'Print tool version and exit.'
    },
    {
        names: ['help', 'h'],
        type: 'bool',
        help: 'Print this help and exit.'
    },
    {
        names: ['verbose', 'v'],
        type: 'arrayOfBool',
        help: 'Verbose output. Use multiple times for more verbose.'
    },
    {
        names: ['file', 'f'],
        type: 'string',
        help: 'File to process',
        helpArg: 'FILE'
    }
];

var parser = dashdash.createParser({options: options});
try {
    var opts = parser.parse(process.argv);
} catch (e) {
    console.error('foo: error: %s', e.message);
    process.exit(1);
}

console.log("# opts:", opts);
console.log("# args:", opts._args);

// Use `parser.help()` for formatted options help.
if (opts.help) {
    var help = parser.help({includeEnv: true}).trimRight();
    console.log('usage: node foo.js [OPTIONS]\n'
                + 'options:\n'
                + help);
    process.exit(0);
}

// ...





Some example output from this script (foo.js):

$ node foo.js -h
# opts: { help: true,
  _order: [ { name: 'help', value: true, from: 'argv' } ],
  _args: [] }
# args: []
usage: node foo.js [OPTIONS]
options:
    --version             Print tool version and exit.
    -h, --help            Print this help and exit.
    -v, --verbose         Verbose output. Use multiple times for more verbose.
    -f FILE, --file=FILE  File to process

$ node foo.js -v
# opts: { verbose: [ true ],
  _order: [ { name: 'verbose', value: true, from: 'argv' } ],
  _args: [] }
# args: []

$ node foo.js --version arg1
# opts: { version: true,
  _order: [ { name: 'version', value: true, from: 'argv' } ],
  _args: [ 'arg1' ] }
# args: [ 'arg1' ]

$ node foo.js -f bar.txt
# opts: { file: 'bar.txt',
  _order: [ { name: 'file', value: 'bar.txt', from: 'argv' } ],
  _args: [] }
# args: []

$ node foo.js -vvv --file=blah
# opts: { verbose: [ true, true, true ],
  file: 'blah',
  _order:
   [ { name: 'verbose', value: true, from: 'argv' },
     { name: 'verbose', value: true, from: 'argv' },
     { name: 'verbose', value: true, from: 'argv' },
     { name: 'file', value: 'blah', from: 'argv' } ],
  _args: [] }
# args: []





See the “examples” dir for a number of starter examples using
some of dashdash’s features.



Environment variable integration

If you want to allow environment variables to specify options to your tool,
dashdash makes this easy. We can change the ‘verbose’ option in the example
above to include an ‘env’ field:

    {
        names: ['verbose', 'v'],
        type: 'arrayOfBool',
        env: 'FOO_VERBOSE',         // <--- add this line
        help: 'Verbose output. Use multiple times for more verbose.'
    },





then the “FOO_VERBOSE” environment variable can be used to set this
option:

$ FOO_VERBOSE=1 node foo.js
# opts: { verbose: [ true ],
  _order: [ { name: 'verbose', value: true, from: 'env' } ],
  _args: [] }
# args: []





Boolean options will interpret the empty string as unset, ‘0’ as false
and anything else as true.

$ FOO_VERBOSE= node examples/foo.js                 # not set
# opts: { _order: [], _args: [] }
# args: []

$ FOO_VERBOSE=0 node examples/foo.js                # '0' is false
# opts: { verbose: [ false ],
  _order: [ { key: 'verbose', value: false, from: 'env' } ],
  _args: [] }
# args: []

$ FOO_VERBOSE=1 node examples/foo.js                # true
# opts: { verbose: [ true ],
  _order: [ { key: 'verbose', value: true, from: 'env' } ],
  _args: [] }
# args: []

$ FOO_VERBOSE=boogabooga node examples/foo.js       # true
# opts: { verbose: [ true ],
  _order: [ { key: 'verbose', value: true, from: 'env' } ],
  _args: [] }
# args: []





Non-booleans can be used as well. Strings:

$ FOO_FILE=data.txt node examples/foo.js
# opts: { file: 'data.txt',
  _order: [ { key: 'file', value: 'data.txt', from: 'env' } ],
  _args: [] }
# args: []





Numbers:

$ FOO_TIMEOUT=5000 node examples/foo.js
# opts: { timeout: 5000,
  _order: [ { key: 'timeout', value: 5000, from: 'env' } ],
  _args: [] }
# args: []

$ FOO_TIMEOUT=blarg node examples/foo.js
foo: error: arg for "FOO_TIMEOUT" is not a positive integer: "blarg"





With the includeEnv: true config to parser.help() the environment
variable can also be included in help output:

usage: node foo.js [OPTIONS]
options:
    --version             Print tool version and exit.
    -h, --help            Print this help and exit.
    -v, --verbose         Verbose output. Use multiple times for more verbose.
                          Environment: FOO_VERBOSE=1
    -f FILE, --file=FILE  File to process







Bash completion

Dashdash provides a simple way to create a Bash completion file that you
can place in your “bash_completion.d” directory – sometimes that is
“/usr/local/etc/bash_completion.d/”). Features:


	Support for short and long opts


	Support for knowing which options take arguments


	Support for subcommands (e.g. ‘git log ’ to show just options for the
log subcommand). See
node-cmdln [https://github.com/trentm/node-cmdln#bash-completion] for
how to integrate that.
  
    

    2.6.9 / 2017-09-22
    

    
 
  

    
      
          
            
  
2.6.9 / 2017-09-22


	remove ReDoS regexp in %o formatter (#504)






2.6.8 / 2017-05-18


	Fix: Check for undefined on browser globals (#462, @marbemac)






2.6.7 / 2017-05-16


	Fix: Update ms to 2.0.0 to fix regular expression denial of service vulnerability (#458, @hubdotcom)


	Fix: Inline extend function in node implementation (#452, @dougwilson)


	Docs: Fix typo (#455, @msasad)






2.6.5 / 2017-04-27


	Fix: null reference check on window.documentElement.style.WebkitAppearance (#447, @thebigredgeek)


	Misc: clean up browser reference checks (#447, @thebigredgeek)


	Misc: add npm-debug.log to .gitignore (@thebigredgeek)






2.6.4 / 2017-04-20


	Fix: bug that would occure if process.env.DEBUG is a non-string value. (#444, @LucianBuzzo)


	Chore: ignore bower.json in npm installations. (#437, @joaovieira)


	Misc: update “ms” to v0.7.3 (@tootallnate)






2.6.3 / 2017-03-13


	Fix: Electron reference to process.env.DEBUG (#431, @paulcbetts)


	Docs: Changelog fix (@thebigredgeek)






2.6.2 / 2017-03-10


	Fix: DEBUG_MAX_ARRAY_LENGTH (#420, @slavaGanzin)


	Docs: Add backers and sponsors from Open Collective (#422, @piamancini)


	Docs: Add Slackin invite badge (@tootallnate)






2.6.1 / 2017-02-10


	Fix: Module’s export default syntax fix for IE8 Expected identifier error


	Fix: Whitelist DEBUG_FD for values 1 and 2 only (#415, @pi0)


	Fix: IE8 “Expected identifier” error (#414, @vgoma)


	Fix: Namespaces would not disable once enabled (#409, @musikov)






2.6.0 / 2016-12-28


	Fix: added better null pointer checks for browser useColors (@thebigredgeek)


	Improvement: removed explicit window.debug export (#404, @tootallnate)


	Improvement: deprecated DEBUG_FD environment variable (#405, @tootallnate)






2.5.2 / 2016-12-25


	Fix: reference error on window within webworkers (#393, @KlausTrainer)


	Docs: fixed README typo (#391, @lurch)


	Docs: added notice about v3 api discussion (@thebigredgeek)






2.5.1 / 2016-12-20


	Fix: babel-core compatibility






2.5.0 / 2016-12-20


	Fix: wrong reference in bower file (@thebigredgeek)


	Fix: webworker compatibility (@thebigredgeek)


	Fix: output formatting issue (#388, @kribblo)


	Fix: babel-loader compatibility (#383, @escwald)


	Misc: removed built asset from repo and publications (@thebigredgeek)


	Misc: moved source files to /src (#378, @yamikuronue)


	Test: added karma integration and replaced babel with browserify for browser tests (#378, @yamikuronue)


	Test: coveralls integration (#378, @yamikuronue)


	Docs: simplified language in the opening paragraph (#373, @yamikuronue)






2.4.5 / 2016-12-17


	Fix: navigator undefined in Rhino (#376, @jochenberger)


	Fix: custom log function (#379, @hsiliev)


	Improvement: bit of cleanup + linting fixes (@thebigredgeek)


	Improvement: rm non-maintainted dist/ dir (#375, @freewil)


	Docs: simplified language in the opening paragraph. (#373, @yamikuronue)






2.4.4 / 2016-12-14


	Fix: work around debug being loaded in preload scripts for electron (#368, @paulcbetts)






2.4.3 / 2016-12-14


	Fix: navigation.userAgent error for react native (#364, @escwald)






2.4.2 / 2016-12-14


	Fix: browser colors (#367, @tootallnate)


	Misc: travis ci integration (@thebigredgeek)


	Misc: added linting and testing boilerplate with sanity check (@thebigredgeek)






2.4.1 / 2016-12-13


	Fix: typo that broke the package (#356)






2.4.0 / 2016-12-13


	Fix: bower.json references unbuilt src entry point (#342, @justmatt)


	Fix: revert “handle regex special characters” (@tootallnate)


	Feature: configurable util.inspect()`options for NodeJS (#327, @tootallnate)


	Feature: %O`(big O) pretty-prints objects (#322, @tootallnate)


	Improvement: allow colors in workers (#335, @botverse)


	Improvement: use same color for same namespace. (#338, @lchenay)






2.3.3 / 2016-11-09


	Fix: Catch JSON.stringify() errors (#195, Jovan Alleyne)


	Fix: Returning localStorage saved values (#331, Levi Thomason)


	Improvement: Don’t create an empty object when no process (Nathan Rajlich)






2.3.2 / 2016-11-09


	Fix: be super-safe in index.js as well (@TooTallNate)


	Fix: should check whether process exists (Tom Newby)






2.3.1 / 2016-11-09


	Fix: Added electron compatibility (#324, @paulcbetts)


	Improvement: Added performance optimizations (@tootallnate)


	Readme: Corrected PowerShell environment variable example (#252, @gimre)


	Misc: Removed yarn lock file from source control (#321, @fengmk2)






2.3.0 / 2016-11-07


	Fix: Consistent placement of ms diff at end of output (#215, @gorangajic)


	Fix: Escaping of regex special characters in namespace strings (#250, @zacronos)


	Fix: Fixed bug causing crash on react-native (#282, @vkarpov15)


	Feature: Enabled ES6+ compatible import via default export (#212 @bucaran)


	Feature: Added %O formatter to reflect Chrome’s console.log capability (#279, @oncletom)


	Package: Update “ms” to 0.7.2 (#315, @DevSide)


	Package: removed superfluous version property from bower.json (#207 @kkirsche)


	Readme: fix USE_COLORS to DEBUG_COLORS


	Readme: Doc fixes for format string sugar (#269, @mlucool)


	Readme: Updated docs for DEBUG_FD and DEBUG_COLORS environment variables (#232, @mattlyons0)


	Readme: doc fixes for PowerShell (#271 #243, @exoticknight @unreadable)


	Readme: better docs for browser support (#224, @matthewmueller)


	Tooling: Added yarn integration for development (#317, @thebigredgeek)


	Misc: Renamed History.md to CHANGELOG.md (@thebigredgeek)


	Misc: Added license file (#226 #274, @CantemoInternal @sdaitzman)


	Misc: Updated contributors (@thebigredgeek)






2.2.0 / 2015-05-09


	package: update “ms” to v0.7.1 (#202, @dougwilson)


	README: add logging to file example (#193, @DanielOchoa)


	README: fixed a typo (#191, @amir-s)


	browser: expose storage (#190, @stephenmathieson)


	Makefile: add a distclean target (#189, @stephenmathieson)






2.1.3 / 2015-03-13


	Updated stdout/stderr example (#186)


	Updated example/stdout.js to match debug current behaviour


	Renamed example/stderr.js to stdout.js


	Update Readme.md (#184)


	replace high intensity foreground color for bold (#182, #183)






2.1.2 / 2015-03-01


	dist: recompile


	update “ms” to v0.7.0


	package: update “browserify” to v9.0.3


	component: fix “ms.js” repo location


	changed bower package name


	updated documentation about using debug in a browser


	fix: security error on safari (#167, #168, @yields)






2.1.1 / 2014-12-29


	browser: use typeof to check for console existence


	browser: check for console.log truthiness (fix IE 8/9)


	browser: add support for Chrome apps


	Readme: added Windows usage remarks


	Add bower.json to properly support bower install






2.1.0 / 2014-10-15


	node: implement DEBUG_FD env variable support


	package: update “browserify” to v6.1.0


	package: add “license” field to package.json (#135, @panuhorsmalahti)






2.0.0 / 2014-09-01


	package: update “browserify” to v5.11.0


	node: use stderr rather than stdout for logging (#29, @stephenmathieson)






1.0.4 / 2014-07-15


	dist: recompile


	example: remove console.info() log usage


	example: add “Content-Type” UTF-8 header to browser example


	browser: place %c marker after the space character


	browser: reset the “content” color via color: inherit


	browser: add colors support for Firefox >= v31


	debug: prefer an instance log() function over the global one (#119)


	Readme: update documentation about styled console logs for FF v31 (#116, @wryk)






1.0.3 / 2014-07-09


	Add support for multiple wildcards in namespaces (#122, @seegno)


	browser: fix lint






1.0.2 / 2014-06-10


	browser: update color palette (#113, @gscottolson)


	common: make console logging function configurable (#108, @timoxley)


	node: fix %o colors on old node <= 0.8.x


	Makefile: find node path using shell/which (#109, @timoxley)






1.0.1 / 2014-06-06


	browser: use removeItem() to clear localStorage


	browser, node: don’t set DEBUG if namespaces is undefined (#107, @leedm777)


	package: add “contributors” section


	node: fix comment typo


	README: list authors






1.0.0 / 2014-06-04


	make ms diff be global, not be scope


	debug: ignore empty strings in enable()


	node: make DEBUG_COLORS able to disable coloring


	*: export the colors array


	npmignore: don’t publish the dist dir


	Makefile: refactor to use browserify


	package: add “browserify” as a dev dependency


	Readme: add Web Inspector Colors section


	node: reset terminal color for the debug content


	node: map “%o” to util.inspect()


	browser: map “%j” to JSON.stringify()


	debug: add custom “formatters”


	debug: use “ms” module for humanizing the diff


	Readme: add “bash” syntax highlighting


	browser: add Firebug color support


	browser: add colors for WebKit browsers


	node: apply log to console


	rewrite: abstract common logic for Node & browsers


	add .jshintrc file






0.8.1 / 2014-04-14


	package: re-add the “component” section






0.8.0 / 2014-03-30


	add enable() method for nodejs. Closes #27


	change from stderr to stdout


	remove unnecessary index.js file






0.7.4 / 2013-11-13


	remove “browserify” key from package.json (fixes something in browserify)






0.7.3 / 2013-10-30


	fix: catch localStorage security error when cookies are blocked (Chrome)


	add debug(err) support. Closes #46


	add .browser prop to package.json. Closes #42






0.7.2 / 2013-02-06


	fix package.json


	fix: Mobile Safari (private mode) is broken with debug


	fix: Use unicode to send escape character to shell instead of octal to work with strict mode javascript






0.7.1 / 2013-02-05


	add repository URL to package.json


	add DEBUG_COLORED to force colored output


	add browserify support


	fix component. Closes #24






0.7.0 / 2012-05-04


	Added .component to package.json


	Added debug.component.js build






0.6.0 / 2012-03-16


	Added support for “-” prefix in DEBUG [Vinay Pulim]


	Added .enabled flag to the node version [TooTallNate]






0.5.0 / 2012-02-02


	Added: humanize diffs. Closes #8


	Added debug.disable() to the CS variant


	Removed padding. Closes #10


	Fixed: persist client-side variant again. Closes #9






0.4.0 / 2012-02-01


	Added browser variant support for older browsers [TooTallNate]


	Added debug.enable('project:*') to browser variant [TooTallNate]


	Added padding to diff (moved it to the right)






0.3.0 / 2012-01-26


	Added millisecond diff when isatty, otherwise UTC string






0.2.0 / 2012-01-22


	Added wildcard support






0.1.0 / 2011-12-02


	Added: remove colors unless stderr isatty [TooTallNate]






0.0.1 / 2010-01-03


	Initial release







          

      

      

    

  

  
    

    debug
    

    
 
  

    
      
          
            
  
debug

[image: ../../_images/debug.svg]Build Status [https://travis-ci.org/visionmedia/debug]  [image: ../../_images/badge2.svg]Coverage Status [https://coveralls.io/github/visionmedia/debug?branch=master]  [image: https://visionmedia-community-slackin.now.sh/badge.svg]Slack [https://visionmedia-community-slackin.now.sh/] [image: ../../_images/badge3.svg]OpenCollective
[image: ../../_images/badge4.svg]OpenCollective

A tiny node.js debugging utility modelled after node core’s debugging technique.

Discussion around the V3 API is under way here [https://github.com/visionmedia/debug/issues/370]


Installation

$ npm install debug







Usage

debug exposes a function; simply pass this function the name of your module, and it will return a decorated version of console.error for you to pass debug statements to. This will allow you to toggle the debug output for different parts of your module as well as the module as a whole.

Example app.js:

var debug = require('debug')('http')
  , http = require('http')
  , name = 'My App';

// fake app

debug('booting %s', name);

http.createServer(function(req, res){
  debug(req.method + ' ' + req.url);
  res.end('hello\n');
}).listen(3000, function(){
  debug('listening');
});

// fake worker of some kind

require('./worker');





Example worker.js:

var debug = require('debug')('worker');

setInterval(function(){
  debug('doing some work');
}, 1000);





The DEBUG environment variable is then used to enable these based on space or comma-delimited names. Here are some examples:

[image: http://f.cl.ly/items/18471z1H402O24072r1J/Screenshot.png]debug http and worker

[image: http://f.cl.ly/items/1X413v1a3M0d3C2c1E0i/Screenshot.png]debug worker


Windows note

On Windows the environment variable is set using the set command.

set DEBUG=*,-not_this





Note that PowerShell uses different syntax to set environment variables.

$env:DEBUG = "*,-not_this"





Then, run the program to be debugged as usual.




Millisecond diff

When actively developing an application it can be useful to see when the time spent between one debug() call and the next. Suppose for example you invoke debug() before requesting a resource, and after as well, the “+NNNms” will show you how much time was spent between calls.

[image: http://f.cl.ly/items/2i3h1d3t121M2Z1A3Q0N/Screenshot.png]

When stdout is not a TTY, Date#toUTCString() is used, making it more useful for logging the debug information as shown below:

[image: http://f.cl.ly/items/112H3i0e0o0P0a2Q2r11/Screenshot.png]



Conventions

If you’re using this in one or more of your libraries, you should use the name of your library so that developers may toggle debugging as desired without guessing names. If you have more than one debuggers you should prefix them with your library name and use “:” to separate features. For example “bodyParser” from Connect would then be “connect:bodyParser”.



Wildcards

The * character may be used as a wildcard. Suppose for example your library has debuggers named “connect:bodyParser”, “connect:compress”, “connect:session”, instead of listing all three with DEBUG=connect:bodyParser,connect:compress,connect:session, you may simply do DEBUG=connect:*, or to run everything using this module simply use DEBUG=*.

You can also exclude specific debuggers by prefixing them with a “-” character.  For example, DEBUG=*,-connect:* would include all debuggers except those starting with “connect:”.



Environment Variables

When running through Node.js, you can set a few environment variables that will
change the behavior of the debug logging:

| Name      | Purpose                                         |
|———–|————————————————-|
| DEBUG   | Enables/disables specific debugging namespaces. |
| DEBUG_COLORS| Whether or not to use colors in the debug output. |
| DEBUG_DEPTH | Object inspection depth. |
| DEBUG_SHOW_HIDDEN | Shows hidden properties on inspected objects. |

Note: The environment variables beginning with DEBUG_ end up being
converted into an Options object that gets used with %o/%O formatters.
See the Node.js documentation for
util.inspect() [https://nodejs.org/api/util.html#util_util_inspect_object_options]
for the complete list.



Formatters

Debug uses printf-style [https://wikipedia.org/wiki/Printf_format_string] formatting. Below are the officially supported formatters:

| Formatter | Representation |
|———–|—————-|
| %O      | Pretty-print an Object on multiple lines. |
| %o      | Pretty-print an Object all on a single line. |
| %s      | String. |
| %d      | Number (both integer and float). |
| %j      | JSON. Replaced with the string ‘[Circular]’ if the argument contains circular references. |
| %%      | Single percent sign (’%’). This does not consume an argument. |


Custom formatters

You can add custom formatters by extending the debug.formatters object. For example, if you wanted to add support for rendering a Buffer as hex with %h, you could do something like:

const createDebug = require('debug')
createDebug.formatters.h = (v) => {
  return v.toString('hex')
}

// …elsewhere
const debug = createDebug('foo')
debug('this is hex: %h', new Buffer('hello world'))
//   foo this is hex: 68656c6c6f20776f726c6421 +0ms








Browser support

You can build a browser-ready script using browserify [https://github.com/substack/node-browserify],
or just use the browserify-as-a-service [https://wzrd.in/] build [https://wzrd.in/standalone/debug@latest],
if you don’t want to build it yourself.

Debug’s enable state is currently persisted by localStorage.
Consider the situation shown below where you have worker:a and worker:b,
and wish to debug both. You can enable this using localStorage.debug:

localStorage.debug = 'worker:*'





And then refresh the page.

a = debug('worker:a');
b = debug('worker:b');

setInterval(function(){
  a('doing some work');
}, 1000);

setInterval(function(){
  b('doing some work');
}, 1200);






Web Inspector Colors

Colors are also enabled on “Web Inspectors” that understand the %c formatting
option. These are WebKit web inspectors, Firefox (since version
31 [https://hacks.mozilla.org/2014/05/editable-box-model-multiple-selection-sublime-text-keys-much-more-firefox-developer-tools-episode-31/])
and the Firebug plugin for Firefox (any version).

Colored output looks something like:

[image: ../../_images/1cde29ce59de606b1530ce2372c944316d7cdba8.png]




Output streams

By default debug will log to stderr, however this can be configured per-namespace by overriding the log method:

Example stdout.js:

var debug = require('debug');
var error = debug('app:error');

// by default stderr is used
error('goes to stderr!');

var log = debug('app:log');
// set this namespace to log via console.log
log.log = console.log.bind(console); // don't forget to bind to console!
log('goes to stdout');
error('still goes to stderr!');

// set all output to go via console.info
// overrides all per-namespace log settings
debug.log = console.info.bind(console);
error('now goes to stdout via console.info');
log('still goes to stdout, but via console.info now');







Authors


	TJ Holowaychuk


	Nathan Rajlich


	Andrew Rhyne






Backers

Support us with a monthly donation and help us continue our activities. [Become a backer [https://opencollective.com/debug#backer]]


  
    

    decamelize
    

    
 
  

    
      
          
            
  
decamelize [image: ../../_images/decamelize.svg]Build Status [https://travis-ci.org/sindresorhus/decamelize]


Convert a camelized string into a lowercased one with a custom separator
Example: unicornRainbow → unicorn_rainbow
  
    

    delayed-stream
    

    
 
  

    
      
          
            
  
delayed-stream

Buffers events from a stream until you are ready to handle them.


Installation

npm install delayed-stream







Usage

The following example shows how to write a http echo server that delays its
response by 1000 ms.

var DelayedStream = require('delayed-stream');
var http = require('http');

http.createServer(function(req, res) {
  var delayed = DelayedStream.create(req);

  setTimeout(function() {
    res.writeHead(200);
    delayed.pipe(res);
  }, 1000);
});





If you are not using Stream#pipe, you can also manually release the buffered
events by calling delayedStream.resume():

var delayed = DelayedStream.create(req);

setTimeout(function() {
  // Emit all buffered events and resume underlaying source
  delayed.resume();
}, 1000);







Implementation

In order to use this meta stream properly, here are a few things you should
know about the implementation.


Event Buffering / Proxying

All events of the source stream are hijacked by overwriting the source.emit
method. Until node implements a catch-all event listener, this is the only way.

However, delayed-stream still continues to emit all events it captures on the
source, regardless of whether you have released the delayed stream yet or
not.

Upon creation, delayed-stream captures all source events and stores them in
an internal event buffer. Once delayedStream.release() is called, all
buffered events are emitted on the delayedStream, and the event buffer is
cleared. After that, delayed-stream merely acts as a proxy for the underlaying
source.



Error handling

Error events on source are buffered / proxied just like any other events.
However, delayedStream.create attaches a no-op 'error' listener to the
source. This way you only have to handle errors on the delayedStream
object, rather than in two places.



Buffer limits

delayed-stream provides a maxDataSize property that can be used to limit
the amount of data being buffered. In order to protect you from bad source
streams that don’t react to source.pause(), this feature is enabled by
default.




API


DelayedStream.create(source, [options])

Returns a new delayedStream. Available options are:


	pauseStream


	maxDataSize




The description for those properties can be found below.



delayedStream.source

The source stream managed by this object. This is useful if you are
passing your delayedStream around, and you still want to access properties
on the source object.



delayedStream.pauseStream = true

Whether to pause the underlaying source when calling
DelayedStream.create(). Modifying this property afterwards has no effect.



delayedStream.maxDataSize = 1024 * 1024

The amount of data to buffer before emitting an error.

If the underlaying source is emitting Buffer objects, the maxDataSize
refers to bytes.

If the underlaying source is emitting JavaScript strings, the size refers to
characters.

If you know what you are doing, you can set this property to Infinity to
disable this feature. You can also modify this property during runtime.



delayedStream.dataSize = 0

The amount of data buffered so far.



delayedStream.readable

An ECMA5 getter that returns the value of source.readable.



delayedStream.resume()

If the delayedStream has not been released so far, delayedStream.release()
is called.

In either case, source.resume() is called.



delayedStream.pause()

Calls source.pause().



delayedStream.pipe(dest)

Calls delayedStream.resume() and then proxies the arguments to source.pipe.



delayedStream.release()

Emits and clears all events that have been buffered up so far. This does not
resume the underlaying source, use delayedStream.resume() instead.




License

delayed-stream is licensed under the MIT license.





          

      

      

    

  

  
    

    Quick Start
    

    
 
  

    
      
          
            
  
  
    

  
  
    

    1.1.2 / 2018-01-11
    

    
 
  

    
      
          
            
  
1.1.2 / 2018-01-11


	perf: remove argument reassignment


	Support Node.js 0.6 to 9.x






1.1.1 / 2017-07-27


	Remove unnecessary Buffer loading


	Support Node.js 0.6 to 8.x






1.1.0 / 2015-09-14


	Enable strict mode in more places


	Support io.js 3.x


	Support io.js 2.x


	Support web browser loading


	Requires bundler like Browserify or webpack










1.0.1 / 2015-04-07


	Fix TypeErrors when under 'use strict' code


	Fix useless type name on auto-generated messages


	Support io.js 1.x


	Support Node.js 0.12






1.0.0 / 2014-09-17


	No changes






0.4.5 / 2014-09-09


	Improve call speed to functions using the function wrapper


	Support Node.js 0.6






0.4.4 / 2014-07-27


	Work-around v8 generating empty stack traces






0.4.3 / 2014-07-26


	Fix exception when global Error.stackTraceLimit is too low






0.4.2 / 2014-07-19


	Correct call site for wrapped functions and properties






0.4.1 / 2014-07-19


	Improve automatic message generation for function properties






0.4.0 / 2014-07-19


	Add TRACE_DEPRECATION environment variable


	Remove non-standard grey color from color output


	Support --no-deprecation argument


	Support --trace-deprecation argument


	Support deprecate.property(fn, prop, message)






0.3.0 / 2014-06-16


	Add NO_DEPRECATION environment variable






0.2.0 / 2014-06-15


	Add deprecate.property(obj, prop, message)


	Remove supports-color dependency for node.js 0.8






0.1.0 / 2014-06-15


	Add deprecate.function(fn, message)


	Add process.on('deprecation', fn) emitter


	Automatically generate message when omitted from deprecate()






0.0.1 / 2014-06-15


	Fix warning for dynamic calls at singe call site






0.0.0 / 2014-06-15


	Initial implementation







          

      

      

    

  

  
    

    depd
    

    
 
  

    
      
          
            
  
depd

[image: ../../_images/depd.svg]NPM Version [https://npmjs.org/package/depd]
[image: ../../_images/depd1.svg]NPM Downloads [https://npmjs.org/package/depd]
[image: ../../_images/depd2.svg]Node.js Version [https://nodejs.org/en/download/]
[image: ../../_images/master23.svg]Linux Build [https://travis-ci.org/dougwilson/nodejs-depd]
[image: ../../_images/master24.svg]Windows Build [https://ci.appveyor.com/project/dougwilson/nodejs-depd]
[image: ../../_images/master25.svg]Coverage Status [https://coveralls.io/r/dougwilson/nodejs-depd?branch=master]

Deprecate all the things


With great modules comes great responsibility; mark things deprecated!





Install

This module is installed directly using npm:

$ npm install depd





This module can also be bundled with systems like
Browserify [http://browserify.org/] or webpack [https://webpack.github.io/],
though by default this module will alter it’s API to no longer display or
track deprecations.



API

var deprecate = require('depd')('my-module')





This library allows you to display deprecation messages to your users.
This library goes above and beyond with deprecation warnings by
introspection of the call stack (but only the bits that it is interested
in).

Instead of just warning on the first invocation of a deprecated
function and never again, this module will warn on the first invocation
of a deprecated function per unique call site, making it ideal to alert
users of all deprecated uses across the code base, rather than just
whatever happens to execute first.

The deprecation warnings from this module also include the file and line
information for the call into the module that the deprecated function was
in.

NOTE this library has a similar interface to the debug module, and
this module uses the calling file to get the boundary for the call stacks,
so you should always create a new deprecate object in each file and not
within some central file.


depd(namespace)

Create a new deprecate function that uses the given namespace name in the
messages and will display the call site prior to the stack entering the
file this function was called from. It is highly suggested you use the
name of your module as the namespace.



deprecate(message)

Call this function from deprecated code to display a deprecation message.
This message will appear once per unique caller site. Caller site is the
first call site in the stack in a different file from the caller of this
function.

If the message is omitted, a message is generated for you based on the site
of the deprecate() call and will display the name of the function called,
similar to the name displayed in a stack trace.



deprecate.function(fn, message)

Call this function to wrap a given function in a deprecation message on any
call to the function. An optional message can be supplied to provide a custom
message.



deprecate.property(obj, prop, message)

Call this function to wrap a given property on object in a deprecation message
on any accessing or setting of the property. An optional message can be supplied
to provide a custom message.

The method must be called on the object where the property belongs (not
inherited from the prototype).

If the property is a data descriptor, it will be converted to an accessor
descriptor in order to display the deprecation message.



process.on(’deprecation’, fn)

This module will allow easy capturing of deprecation errors by emitting the
errors as the type “deprecation” on the global process. If there are no
listeners for this type, the errors are written to STDERR as normal, but if
there are any listeners, nothing will be written to STDERR and instead only
emitted. From there, you can write the errors in a different format or to a
logging source.

The error represents the deprecation and is emitted only once with the same
rules as writing to STDERR. The error has the following properties:


	message - This is the message given by the library


	name - This is always 'DeprecationError'


	namespace - This is the namespace the deprecation came from


	stack - This is the stack of the call to the deprecated thing




Example error.stack output:

DeprecationError: my-cool-module deprecated oldfunction
    at Object.<anonymous> ([eval]-wrapper:6:22)
    at Module._compile (module.js:456:26)
    at evalScript (node.js:532:25)
    at startup (node.js:80:7)
    at node.js:902:3







process.env.NO_DEPRECATION

As a user of modules that are deprecated, the environment variable NO_DEPRECATION
is provided as a quick solution to silencing deprecation warnings from being
output. The format of this is similar to that of DEBUG:

$ NO_DEPRECATION=my-module,othermod node app.js





This will suppress deprecations from being output for “my-module” and “othermod”.
The value is a list of comma-separated namespaces. To suppress every warning
across all namespaces, use the value * for a namespace.

Providing the argument --no-deprecation to the node executable will suppress
all deprecations (only available in Node.js 0.8 or higher).

NOTE This will not suppress the deperecations given to any “deprecation”
event listeners, just the output to STDERR.



process.env.TRACE_DEPRECATION

As a user of modules that are deprecated, the environment variable TRACE_DEPRECATION
is provided as a solution to getting more detailed location information in deprecation
warnings by including the entire stack trace. The format of this is the same as
NO_DEPRECATION:

$ TRACE_DEPRECATION=my-module,othermod node app.js





This will include stack traces for deprecations being output for “my-module” and
“othermod”. The value is a list of comma-separated namespaces. To trace every
warning across all namespaces, use the value * for a namespace.

Providing the argument --trace-deprecation to the node executable will trace
all deprecations (only available in Node.js 0.8 or higher).

NOTE This will not trace the deperecations silenced by NO_DEPRECATION.




Display

[image: node_modules/depd/files/message.png]message

When a user calls a function in your library that you mark deprecated, they
will see the following written to STDERR (in the given colors, similar colors
and layout to the debug module):

bright cyan    bright yellow
|              |          reset       cyan
|              |          |           |
▼              ▼          ▼           ▼
my-cool-module deprecated oldfunction [eval]-wrapper:6:22
▲              ▲          ▲           ▲
|              |          |           |
namespace      |          |           location of mycoolmod.oldfunction() call
               |          deprecation message
               the word "deprecated"





If the user redirects their STDERR to a file or somewhere that does not support
colors, they see (similar layout to the debug module):

Sun, 15 Jun 2014 05:21:37 GMT my-cool-module deprecated oldfunction at [eval]-wrapper:6:22
▲                             ▲              ▲          ▲              ▲
|                             |              |          |              |
timestamp of message          namespace      |          |             location of mycoolmod.oldfunction() call
                                             |          deprecation message
                                             the word "deprecated"







Examples


Deprecating all calls to a function

This will display a deprecated message about “oldfunction” being deprecated
from “my-module” on STDERR.

var deprecate = require('depd')('my-cool-module')

// message automatically derived from function name
// Object.oldfunction
exports.oldfunction = deprecate.function(function oldfunction () {
  // all calls to function are deprecated
})

// specific message
exports.oldfunction = deprecate.function(function () {
  // all calls to function are deprecated
}, 'oldfunction')







Conditionally deprecating a function call

This will display a deprecated message about “weirdfunction” being deprecated
from “my-module” on STDERR when called with less than 2 arguments.

var deprecate = require('depd')('my-cool-module')

exports.weirdfunction = function () {
  if (arguments.length < 2) {
    // calls with 0 or 1 args are deprecated
    deprecate('weirdfunction args < 2')
  }
}





When calling deprecate as a function, the warning is counted per call site
within your own module, so you can display different deprecations depending
on different situations and the users will still get all the warnings:

var deprecate = require('depd')('my-cool-module')

exports.weirdfunction = function () {
  if (arguments.length < 2) {
    // calls with 0 or 1 args are deprecated
    deprecate('weirdfunction args < 2')
  } else if (typeof arguments[0] !== 'string') {
    // calls with non-string first argument are deprecated
    deprecate('weirdfunction non-string first arg')
  }
}







Deprecating property access

This will display a deprecated message about “oldprop” being deprecated
from “my-module” on STDERR when accessed. A deprecation will be displayed
when setting the value and when getting the value.

var deprecate = require('depd')('my-cool-module')

exports.oldprop = 'something'

// message automatically derives from property name
deprecate.property(exports, 'oldprop')

// explicit message
deprecate.property(exports, 'oldprop', 'oldprop >= 0.10')








License

MIT





          

      

      

    

  

  
    

    Destroy
    

    
 
  

    
      
          
            
  
Destroy

[image: ../../_images/destroy.svg]NPM version [https://npmjs.org/package/destroy]
[image: ../../_images/destroy1.svg]Build status [https://travis-ci.org/stream-utils/destroy]
[image: ../../_images/destroy2.svg]Test coverage [https://coveralls.io/r/stream-utils/destroy?branch=master]
[image: ../../_images/destroy3.svg]License
[image: ../../_images/destroy4.svg]Downloads [https://npmjs.org/package/destroy]
[image: https://img.shields.io/gittip/jonathanong.svg?style=flat-square]Gittip [https://www.gittip.com/jonathanong/]

Destroy a stream.

This module is meant to ensure a stream gets destroyed, handling different APIs
and Node.js bugs.


API

var destroy = require('destroy')






destroy(stream)

Destroy the given stream. In most cases, this is identical to a simple
stream.destroy() call. The rules are as follows for a given stream:


	If the stream is an instance of ReadStream, then call stream.destroy()
and add a listener to the open event to call stream.close() if it is
fired. This is for a Node.js bug that will leak a file descriptor if
.destroy() is called before open.


	If the stream is not an instance of Stream, then nothing happens.


	If the stream has a .destroy() method, then call it.




The function returns the stream passed in as the argument.




Example

var destroy = require('destroy')

var fs = require('fs')
var stream = fs.createReadStream('package.json')

// ... and later
destroy(stream)









          

      

      

    

  

  
    

    directory-tree
    

    
 
  

    
      
          
            
  [image: ../../_images/node-directory-tree.svg]Build Status [https://travis-ci.org/mihneadb/node-directory-tree]


directory-tree

Creates a JavaScript object representing a directory tree.


Install

$ npm install directory-tree







Usage

const dirTree = require("directory-tree");
const tree = dirTree("/some/path");





And you can also filter by an extensions regex:
This is useful for including only certain types of files.

const dirTree = require("directory-tree");
const filteredTree = dirTree("/some/path", { extensions: /\.txt/ });





Example for filtering multiple extensions with Regex.

const dirTree = require("directory-tree");
const filteredTree = dirTree("/some/path", {
  extensions: /\.(md|js|html|java|py|rb)$/
});





You can also exclude paths from the tree using a regex:

const dirTree = require("directory-tree");
const filteredTree = dirTree("/some/path", { exclude: /some_path_to_exclude/ });





You can also specify which additional attributes you would like to be included about each file/directory:

const dirTree = require('directory-tree');
const filteredTree = dirTree('/some/path', {attributes:['mode', 'mtime']});





The default attributes are [name, size, extension, path] for Files and [name, size, path] for Directories

A callback function can be executed with each file that matches the extensions provided:

const PATH = require('path');
const dirTree = require('directory-tree');

const tree = dirTree('./test/test_data', {extensions:/\.txt$/}, (item, PATH, stats) => {
	console.log(item);
});





The callback function takes the directory item (has path, name, size, and extension) and an instance of node path [https://nodejs.org/api/path.html] and an instance of node FS.stats [https://nodejs.org/api/fs.html#fs_class_fs_stats].

You can also pass a callback function for directories:

const PATH = require('path');
const dirTree = require('directory-tree');

const tree = dirTree('./test/test_data', {extensions:/\.txt$/}, null, (item, PATH, stats) => {
	console.log(item);
});







Options

exclude : RegExp|RegExp[] - A RegExp or an array of RegExp to test for exlusion of directories.

extensions : RegExp - A RegExp to test for exclusion of files with the matching extension.

attributes : string[] - Array of FS.stats [https://nodejs.org/api/fs.html#fs_class_fs_stats] attributes.

normalizePath : Boolean - If true, windows style paths will be normalized to unix style pathes (/ instead of \).



Result

Given a directory structured like this:

photos
├── summer
│   └── june
│       └── windsurf.jpg
└── winter
    └── january
        ├── ski.png
        └── snowboard.jpg





directory-tree will return this JS object:

{
  "path": "photos",
  "name": "photos",
  "size": 600,
  "type": "directory",
  "children": [
    {
      "path": "photos/summer",
      "name": "summer",
      "size": 400,
      "type": "directory",
      "children": [
        {
          "path": "photos/summer/june",
          "name": "june",
          "size": 400,
          "type": "directory",
          "children": [
            {
              "path": "photos/summer/june/windsurf.jpg",
              "name": "windsurf.jpg",
              "size": 400,
              "type": "file",
              "extension": ".jpg"
            }
          ]
        }
      ]
    },
    {
      "path": "photos/winter",
      "name": "winter",
      "size": 200,
      "type": "directory",
      "children": [
        {
          "path": "photos/winter/january",
          "name": "january",
          "size": 200,
          "type": "directory",
          "children": [
            {
              "path": "photos/winter/january/ski.png",
              "name": "ski.png",
              "size": 100,
              "type": "file",
              "extension": ".png"
            },
            {
              "path": "photos/winter/january/snowboard.jpg",
              "name": "snowboard.jpg",
              "size": 100,
              "type": "file",
              "extension": ".jpg"
            }
          ]
        }
      ]
    }
  ]
}







Note

Device, FIFO and socket files are ignored.

Files to which the user does not have permissions are included in the directory
tree, however, directories to which the user does not have permissions, along
with all of its contained files, are completely ignored.



Dev

To run tests go the package root in your CLI and run,

$ npm test





Make sure you have the dev dependencies installed (e.g. npm install .)



Node version

This project requires at least Node v4.2.
Check out version 0.1.1 if you need support for older versions of Node.





          

      

      

    

  

  
    

    ecc-jsbn
    

    
 
  

    
      
          
            
  
ecc-jsbn

ECC package based on jsbn [https://github.com/andyperlitch/jsbn] from Tom Wu [http://www-cs-students.stanford.edu/~tjw/].

This is a subset of the same interface as the node compiled module [https://github.com/quartzjer/ecc], but works in the browser too.

Also uses point compression now from https://github.com/kaielvin [https://github.com/kaielvin/jsbn-ec-point-compression].




          

      

      

    

  

  
    

    EE First
    

    
 
  

    
      
          
            
  
EE First

[image: ../../_images/ee-first.svg]NPM version [https://npmjs.org/package/ee-first]
[image: ../../_images/ee-first1.svg]Build status [https://travis-ci.org/jonathanong/ee-first]
[image: ../../_images/ee-first2.svg]Test coverage [https://coveralls.io/r/jonathanong/ee-first?branch=master]
[image: ../../_images/ee-first3.svg]License
[image: ../../_images/ee-first4.svg]Downloads [https://npmjs.org/package/ee-first]
[image: https://img.shields.io/gittip/jonathanong.svg?style=flat-square]Gittip [https://www.gittip.com/jonathanong/]

Get the first event in a set of event emitters and event pairs,
then clean up after itself.


Install

$ npm install ee-first







API

var first = require('ee-first')






first(arr, listener)

Invoke listener on the first event from the list specified in arr. arr is
an array of arrays, with each array in the format [ee, ...event]. listener
will be called only once, the first time any of the given events are emitted. If
error is one of the listened events, then if that fires first, the listener
will be given the err argument.

The listener is invoked as listener(err, ee, event, args), where err is the
first argument emitted from an error event, if applicable; ee is the event
emitter that fired; event is the string event name that fired; and args is an
array of the arguments that were emitted on the event.

var ee1 = new EventEmitter()
var ee2 = new EventEmitter()

first([
  [ee1, 'close', 'end', 'error'],
  [ee2, 'error']
], function (err, ee, event, args) {
  // listener invoked
})






.cancel()

The group of listeners can be cancelled before being invoked and have all the event
listeners removed from the underlying event emitters.

var thunk = first([
  [ee1, 'close', 'end', 'error'],
  [ee2, 'error']
], function (err, ee, event, args) {
  // listener invoked
})

// cancel and clean up
thunk.cancel()











          

      

      

    

  

  
    

    1.0.2 / 2018-01-21
    

    
 
  

    
      
          
            
  
1.0.2 / 2018-01-21


	Fix encoding % as last character






1.0.1 / 2016-06-09


	Fix encoding unpaired surrogates at start/end of string






1.0.0 / 2016-06-08


	Initial release







          

      

      

    

  

  
    

    encodeurl
    

    
 
  

    
      
          
            
  
encodeurl

[image: ../../_images/encodeurl.svg]NPM Version [https://npmjs.org/package/encodeurl]
[image: ../../_images/encodeurl1.svg]NPM Downloads [https://npmjs.org/package/encodeurl]
[image: ../../_images/encodeurl2.svg]Node.js Version [https://nodejs.org/en/download]
[image: ../../_images/encodeurl3.svg]Build Status [https://travis-ci.org/pillarjs/encodeurl]
[image: ../../_images/encodeurl4.svg]Test Coverage [https://coveralls.io/r/pillarjs/encodeurl?branch=master]

Encode a URL to a percent-encoded form, excluding already-encoded sequences


Installation

This is a Node.js [https://nodejs.org/en/] module available through the
npm registry [https://www.npmjs.com/]. Installation is done using the
npm install command [https://docs.npmjs.com/getting-started/installing-npm-packages-locally]:

$ npm install encodeurl







API

var encodeUrl = require('encodeurl')






encodeUrl(url)

Encode a URL to a percent-encoded form, excluding already-encoded sequences.

This function will take an already-encoded URL and encode all the non-URL
code points (as UTF-8 byte sequences). This function will not encode the
“%” character unless it is not part of a valid sequence (%20 will be
left as-is, but %foo will be encoded as %25foo).

This encode is meant to be “safe” and does not throw errors. It will try as
hard as it can to properly encode the given URL, including replacing any raw,
unpaired surrogate pairs with the Unicode replacement character prior to
encoding.

This function is similar to the intrinsic function encodeURI, except it
will not encode the % character if that is part of a valid sequence, will
not encode [ and ] (for IPv6 hostnames) and will replace raw, unpaired
surrogate pairs with the Unicode replacement character (instead of throwing).




Examples


Encode a URL containing user-controled data

var encodeUrl = require('encodeurl')
var escapeHtml = require('escape-html')

http.createServer(function onRequest (req, res) {
  // get encoded form of inbound url
  var url = encodeUrl(req.url)

  // create html message
  var body = '<p>Location ' + escapeHtml(url) + ' not found</p>'

  // send a 404
  res.statusCode = 404
  res.setHeader('Content-Type', 'text/html; charset=UTF-8')
  res.setHeader('Content-Length', String(Buffer.byteLength(body, 'utf-8')))
  res.end(body, 'utf-8')
})







Encode a URL for use in a header field

var encodeUrl = require('encodeurl')
var escapeHtml = require('escape-html')
var url = require('url')

http.createServer(function onRequest (req, res) {
  // parse inbound url
  var href = url.parse(req)

  // set new host for redirect
  href.host = 'localhost'
  href.protocol = 'https:'
  href.slashes = true

  // create location header
  var location = encodeUrl(url.format(href))

  // create html message
  var body = '<p>Redirecting to new site: ' + escapeHtml(location) + '</p>'

  // send a 301
  res.statusCode = 301
  res.setHeader('Content-Type', 'text/html; charset=UTF-8')
  res.setHeader('Content-Length', String(Buffer.byteLength(body, 'utf-8')))
  res.setHeader('Location', location)
  res.end(body, 'utf-8')
})








Testing

$ npm test
$ npm run lint







References


	RFC 3986: Uniform Resource Identifier (URI): Generic Syntax [https://tools.ietf.org/html/rfc3986]


	WHATWG URL Living Standard [https://url.spec.whatwg.org/]






License

MIT





          

      

      

    

  

  
    

    escape-html
    

    
 
  

    
      
          
            
  
escape-html

Escape string for use in HTML


Example

var escape = require('escape-html');
var html = escape('foo & bar');
// -> foo &amp; bar







Benchmark

$ npm run-script bench

> escape-html@1.0.3 bench nodejs-escape-html
> node benchmark/index.js


  http_parser@1.0
  node@0.10.33
  v8@3.14.5.9
  ares@1.9.0-DEV
  uv@0.10.29
  zlib@1.2.3
  modules@11
  openssl@1.0.1j

  1 test completed.
  2 tests completed.
  3 tests completed.

  no special characters    x 19,435,271 ops/sec ±0.85% (187 runs sampled)
  single special character x  6,132,421 ops/sec ±0.67% (194 runs sampled)
  many special characters  x  3,175,826 ops/sec ±0.65% (193 runs sampled)







License

MIT





          

      

      

    

  

  
    

    1.8.1 / 2017-09-12
    

    
 
  

    
      
          
            
  
1.8.1 / 2017-09-12


	perf: replace regular expression with substring






1.8.0 / 2017-02-18


	Use SHA1 instead of MD5 for ETag hashing


	Improves performance for larger entities


	Works with FIPS 140-2 OpenSSL configuration










1.7.0 / 2015-06-08


	Always include entity length in ETags for hash length extensions


	Generate non-Stats ETags using MD5 only (no longer CRC32)


	Improve stat performance by removing hashing


	Remove base64 padding in ETags to shorten


	Use MD5 instead of MD4 in weak ETags over 1KB






1.6.0 / 2015-05-10


	Improve support for JXcore


	Remove requirement of atime in the stats object


	Support “fake” stats objects in environments without fs






1.5.1 / 2014-11-19


	deps: crc@3.2.1


	Minor fixes










1.5.0 / 2014-10-14


	Improve string performance


	Slightly improve speed for weak ETags over 1KB






1.4.0 / 2014-09-21


	Support “fake” stats objects


	Support Node.js 0.6






1.3.1 / 2014-09-14


	Use the (new and improved) crc for crc32






1.3.0 / 2014-08-29


	Default strings to strong ETags


	Improve speed for weak ETags over 1KB






1.2.1 / 2014-08-29


	Use the (much faster) buffer-crc32 for crc32






1.2.0 / 2014-08-24


	Add support for file stat objects






1.1.0 / 2014-08-24


	Add fast-path for empty entity


	Add weak ETag generation


	Shrink size of generated ETags






1.0.1 / 2014-08-24


	Fix behavior of string containing Unicode






1.0.0 / 2014-05-18


	Initial release







          

      

      

    

  

  
    

    etag
    

    
 
  

    
      
          
            
  
etag

[image: ../../_images/etag.svg]NPM Version [https://npmjs.org/package/etag]
[image: ../../_images/etag1.svg]NPM Downloads [https://npmjs.org/package/etag]
[image: ../../_images/etag2.svg]Node.js Version [https://nodejs.org/en/download/]
[image: ../../_images/master26.svg]Build Status [https://travis-ci.org/jshttp/etag]
[image: ../../_images/master27.svg]Test Coverage [https://coveralls.io/r/jshttp/etag?branch=master]

Create simple HTTP ETags

This module generates HTTP ETags (as defined in RFC 7232) for use in
HTTP responses.


Installation

This is a Node.js [https://nodejs.org/en/] module available through the
npm registry [https://www.npmjs.com/]. Installation is done using the
npm install command [https://docs.npmjs.com/getting-started/installing-npm-packages-locally]:

$ npm install etag







API

var etag = require('etag')






etag(entity, [options])

Generate a strong ETag for the given entity. This should be the complete
body of the entity. Strings, Buffers, and fs.Stats are accepted. By
default, a strong ETag is generated except for fs.Stats, which will
generate a weak ETag (this can be overwritten by options.weak).

res.setHeader('ETag', etag(body))






Options

etag accepts these properties in the options object.


weak

Specifies if the generated ETag will include the weak validator mark (that
is, the leading W/). The actual entity tag is the same. The default value
is false, unless the entity is fs.Stats, in which case it is true.






Testing

$ npm test







Benchmark

$ npm run-script bench

> etag@1.8.1 bench nodejs-etag
> node benchmark/index.js

  http_parser@2.7.0
  node@6.11.1
  v8@5.1.281.103
  uv@1.11.0
  zlib@1.2.11
  ares@1.10.1-DEV
  icu@58.2
  modules@48
  openssl@1.0.2k

> node benchmark/body0-100b.js

  100B body

  4 tests completed.

  buffer - strong x 258,647 ops/sec ±1.07% (180 runs sampled)
  buffer - weak   x 263,812 ops/sec ±0.61% (184 runs sampled)
  string - strong x 259,955 ops/sec ±1.19% (185 runs sampled)
  string - weak   x 264,356 ops/sec ±1.09% (184 runs sampled)

> node benchmark/body1-1kb.js

  1KB body

  4 tests completed.

  buffer - strong x 189,018 ops/sec ±1.12% (182 runs sampled)
  buffer - weak   x 190,586 ops/sec ±0.81% (186 runs sampled)
  string - strong x 144,272 ops/sec ±0.96% (188 runs sampled)
  string - weak   x 145,380 ops/sec ±1.43% (187 runs sampled)

> node benchmark/body2-5kb.js

  5KB body

  4 tests completed.

  buffer - strong x 92,435 ops/sec ±0.42% (188 runs sampled)
  buffer - weak   x 92,373 ops/sec ±0.58% (189 runs sampled)
  string - strong x 48,850 ops/sec ±0.56% (186 runs sampled)
  string - weak   x 49,380 ops/sec ±0.56% (190 runs sampled)

> node benchmark/body3-10kb.js

  10KB body

  4 tests completed.

  buffer - strong x 55,989 ops/sec ±0.93% (188 runs sampled)
  buffer - weak   x 56,148 ops/sec ±0.55% (190 runs sampled)
  string - strong x 27,345 ops/sec ±0.43% (188 runs sampled)
  string - weak   x 27,496 ops/sec ±0.45% (190 runs sampled)

> node benchmark/body4-100kb.js

  100KB body

  4 tests completed.

  buffer - strong x 7,083 ops/sec ±0.22% (190 runs sampled)
  buffer - weak   x 7,115 ops/sec ±0.26% (191 runs sampled)
  string - strong x 3,068 ops/sec ±0.34% (190 runs sampled)
  string - weak   x 3,096 ops/sec ±0.35% (190 runs sampled)

> node benchmark/stats.js

  stat

  4 tests completed.

  real - strong x 871,642 ops/sec ±0.34% (189 runs sampled)
  real - weak   x 867,613 ops/sec ±0.39% (190 runs sampled)
  fake - strong x 401,051 ops/sec ±0.40% (189 runs sampled)
  fake - weak   x 400,100 ops/sec ±0.47% (188 runs sampled)







License

MIT





          

      

      

    

  

  
    

    4.16.4 / 2018-10-10
    

    
 
  

    
      
          
            
  
4.16.4 / 2018-10-10


	Fix issue where "Request aborted" may be logged in res.sendfile


	Fix JSDoc for Router constructor


	deps: body-parser@1.18.3


	Fix deprecation warnings on Node.js 10+


	Fix stack trace for strict json parse error


	deps: depd@~1.1.2


	deps: http-errors@~1.6.3


	deps: iconv-lite@0.4.23


	deps: qs@6.5.2


	deps: raw-body@2.3.3


	deps: type-is@~1.6.16






	deps: proxy-addr@~2.0.4


	deps: ipaddr.js@1.8.0






	deps: qs@6.5.2


	deps: safe-buffer@5.1.2






4.16.3 / 2018-03-12


	deps: accepts@~1.3.5


	deps: mime-types@~2.1.18






	deps: depd@~1.1.2


	perf: remove argument reassignment






	deps: encodeurl@~1.0.2


	Fix encoding % as last character






	deps: finalhandler@1.1.1


	Fix 404 output for bad / missing pathnames


	deps: encodeurl@~1.0.2


	deps: statuses@~1.4.0






	deps: proxy-addr@~2.0.3


	deps: ipaddr.js@1.6.0






	deps: send@0.16.2


	Fix incorrect end tag in default error & redirects


	deps: depd@~1.1.2


	deps: encodeurl@~1.0.2


	deps: statuses@~1.4.0






	deps: serve-static@1.13.2


	Fix incorrect end tag in redirects


	deps: encodeurl@~1.0.2


	deps: send@0.16.2






	deps: statuses@~1.4.0


	deps: type-is@~1.6.16


	deps: mime-types@~2.1.18










4.16.2 / 2017-10-09


	Fix TypeError in res.send when given Buffer and ETag header set


	perf: skip parsing of entire X-Forwarded-Proto header






4.16.1 / 2017-09-29


	deps: send@0.16.1


	deps: serve-static@1.13.1


	Fix regression when root is incorrectly set to a file


	deps: send@0.16.1










4.16.0 / 2017-09-28


	Add "json escape" setting for res.json and res.jsonp


	Add express.json and express.urlencoded to parse bodies


	Add options argument to res.download


	Improve error message when autoloading invalid view engine


	Improve error messages when non-function provided as middleware


	Skip Buffer encoding when not generating ETag for small response


	Use safe-buffer for improved Buffer API


	deps: accepts@~1.3.4


	deps: mime-types@~2.1.16






	deps: content-type@~1.0.4


	perf: remove argument reassignment


	perf: skip parameter parsing when no parameters






	deps: etag@~1.8.1


	perf: replace regular expression with substring






	deps: finalhandler@1.1.0


	Use res.headersSent when available






	deps: parseurl@~1.3.2


	perf: reduce overhead for full URLs


	perf: unroll the “fast-path” RegExp






	deps: proxy-addr@~2.0.2


	Fix trimming leading / trailing OWS in X-Forwarded-For


	deps: forwarded@~0.1.2


	deps: ipaddr.js@1.5.2


	perf: reduce overhead when no X-Forwarded-For header






	deps: qs@6.5.1


	Fix parsing & compacting very deep objects






	deps: send@0.16.0


	Add 70 new types for file extensions


	Add immutable option


	Fix missing </html> in default error & redirects


	Set charset as “UTF-8” for .js and .json


	Use instance methods on steam to check for listeners


	deps: mime@1.4.1


	perf: improve path validation speed






	deps: serve-static@1.13.0


	Add 70 new types for file extensions


	Add immutable option


	Set charset as “UTF-8” for .js and .json


	deps: send@0.16.0






	deps: setprototypeof@1.1.0


	deps: utils-merge@1.0.1


	deps: vary@~1.1.2


	perf: improve header token parsing speed






	perf: re-use options object when generating ETags


	perf: remove dead .charset set in res.jsonp






4.15.5 / 2017-09-24


	deps: debug@2.6.9


	deps: finalhandler@~1.0.6


	deps: debug@2.6.9


	deps: parseurl@~1.3.2






	deps: fresh@0.5.2


	Fix handling of modified headers with invalid dates


	perf: improve ETag match loop


	perf: improve If-None-Match token parsing






	deps: send@0.15.6


	Fix handling of modified headers with invalid dates


	deps: debug@2.6.9


	deps: etag@~1.8.1


	deps: fresh@0.5.2


	perf: improve If-Match token parsing






	deps: serve-static@1.12.6


	deps: parseurl@~1.3.2


	deps: send@0.15.6


	perf: improve slash collapsing










4.15.4 / 2017-08-06


	deps: debug@2.6.8


	deps: depd@~1.1.1


	Remove unnecessary Buffer loading






	deps: finalhandler@~1.0.4


	deps: debug@2.6.8






	deps: proxy-addr@~1.1.5


	Fix array argument being altered


	deps: ipaddr.js@1.4.0






	deps: qs@6.5.0


	deps: send@0.15.4


	deps: debug@2.6.8


	deps: depd@~1.1.1


	deps: http-errors@~1.6.2






	deps: serve-static@1.12.4


	deps: send@0.15.4










4.15.3 / 2017-05-16


	Fix error when res.set cannot add charset to Content-Type


	deps: debug@2.6.7


	Fix DEBUG_MAX_ARRAY_LENGTH


	deps: ms@2.0.0






	deps: finalhandler@~1.0.3


	Fix missing </html> in HTML document


	deps: debug@2.6.7






	deps: proxy-addr@~1.1.4


	deps: ipaddr.js@1.3.0






	deps: send@0.15.3


	deps: debug@2.6.7


	deps: ms@2.0.0






	deps: serve-static@1.12.3


	deps: send@0.15.3






	deps: type-is@~1.6.15


	deps: mime-types@~2.1.15






	deps: vary@~1.1.1


	perf: hoist regular expression










4.15.2 / 2017-03-06


	deps: qs@6.4.0


	Fix regression parsing keys starting with [










4.15.1 / 2017-03-05


	deps: send@0.15.1


	Fix issue when Date.parse does not return NaN on invalid date


	Fix strict violation in broken environments






	deps: serve-static@1.12.1


	Fix issue when Date.parse does not return NaN on invalid date


	deps: send@0.15.1










4.15.0 / 2017-03-01


	Add debug message when loading view engine


	Add next("router") to exit from router


	Fix case where router.use skipped requests routes did not


	Remove usage of res._headers private field


	Improves compatibility with Node.js 8 nightly






	Skip routing when req.url is not set


	Use %o in path debug to tell types apart


	Use Object.create to setup request & response prototypes


	Use setprototypeof module to replace __proto__ setting


	Use statuses instead of http module for status messages


	deps: debug@2.6.1


	Allow colors in workers


	Deprecated DEBUG_FD environment variable set to 3 or higher


	Fix error when running under React Native


	Use same color for same namespace


	deps: ms@0.7.2






	deps: etag@~1.8.0


	Use SHA1 instead of MD5 for ETag hashing


	Works with FIPS 140-2 OpenSSL configuration






	deps: finalhandler@~1.0.0


	Fix exception when err cannot be converted to a string


	Fully URL-encode the pathname in the 404


	Only include the pathname in the 404 message


	Send complete HTML document


	Set Content-Security-Policy: default-src 'self' header


	deps: debug@2.6.1






	deps: fresh@0.5.0


	Fix false detection of no-cache request directive


	Fix incorrect result when If-None-Match has both * and ETags


	Fix weak ETag matching to match spec


	perf: delay reading header values until needed


	perf: enable strict mode


	perf: hoist regular expressions


	perf: remove duplicate conditional


	perf: remove unnecessary boolean coercions


	perf: skip checking modified time if ETag check failed


	perf: skip parsing If-None-Match when no ETag header


	perf: use Date.parse instead of new Date






	deps: qs@6.3.1


	Fix array parsing from skipping empty values


	Fix compacting nested arrays






	deps: send@0.15.0


	Fix false detection of no-cache request directive


	Fix incorrect result when If-None-Match has both * and ETags


	Fix weak ETag matching to match spec


	Remove usage of res._headers private field


	Support If-Match and If-Unmodified-Since headers


	Use res.getHeaderNames() when available


	Use res.headersSent when available


	deps: debug@2.6.1


	deps: etag@~1.8.0


	deps: fresh@0.5.0


	deps: http-errors@~1.6.1






	deps: serve-static@1.12.0


	Fix false detection of no-cache request directive


	Fix incorrect result when If-None-Match has both * and ETags


	Fix weak ETag matching to match spec


	Remove usage of res._headers private field


	Send complete HTML document in redirect response


	Set default CSP header in redirect response


	Support If-Match and If-Unmodified-Since headers


	Use res.getHeaderNames() when available


	Use res.headersSent when available


	deps: send@0.15.0






	perf: add fast match path for * route


	perf: improve req.ips performance






4.14.1 / 2017-01-28


	deps: content-disposition@0.5.2


	deps: finalhandler@0.5.1


	Fix exception when err.headers is not an object


	deps: statuses@~1.3.1


	perf: hoist regular expressions


	perf: remove duplicate validation path






	deps: proxy-addr@~1.1.3


	deps: ipaddr.js@1.2.0






	deps: send@0.14.2


	deps: http-errors@~1.5.1


	deps: ms@0.7.2


	deps: statuses@~1.3.1






	deps: serve-static@~1.11.2


	deps: send@0.14.2






	deps: type-is@~1.6.14


	deps: mime-types@~2.1.13










4.14.0 / 2016-06-16


	Add acceptRanges option to res.sendFile/res.sendfile


	Add cacheControl option to res.sendFile/res.sendfile


	Add options argument to req.range


	Includes the combine option






	Encode URL in res.location/res.redirect if not already encoded


	Fix some redirect handling in res.sendFile/res.sendfile


	Fix Windows absolute path check using forward slashes


	Improve error with invalid arguments to req.get()


	Improve performance for res.json/res.jsonp in most cases


	Improve Range header handling in res.sendFile/res.sendfile


	deps: accepts@~1.3.3


	Fix including type extensions in parameters in Accept parsing


	Fix parsing Accept parameters with quoted equals


	Fix parsing Accept parameters with quoted semicolons


	Many performance improvments


	deps: mime-types@~2.1.11


	deps: negotiator@0.6.1






	deps: content-type@~1.0.2


	perf: enable strict mode






	deps: cookie@0.3.1


	Add sameSite option


	Fix cookie Max-Age to never be a floating point number


	Improve error message when encode is not a function


	Improve error message when expires is not a Date


	Throw better error for invalid argument to parse


	Throw on invalid values provided to serialize


	perf: enable strict mode


	perf: hoist regular expression


	perf: use for loop in parse


	perf: use string concatination for serialization






	deps: finalhandler@0.5.0


	Change invalid or non-numeric status code to 500


	Overwrite status message to match set status code


	Prefer err.statusCode if err.status is invalid


	Set response headers from err.headers object


	Use statuses instead of http module for status messages






	deps: proxy-addr@~1.1.2


	Fix accepting various invalid netmasks


	Fix IPv6-mapped IPv4 validation edge cases


	IPv4 netmasks must be contingous


	IPv6 addresses cannot be used as a netmask


	deps: ipaddr.js@1.1.1






	deps: qs@6.2.0


	Add decoder option in parse function






	deps: range-parser@~1.2.0


	Add combine option to combine overlapping ranges


	Fix incorrectly returning -1 when there is at least one valid range


	perf: remove internal function






	deps: send@0.14.1


	Add acceptRanges option


	Add cacheControl option


	Attempt to combine multiple ranges into single range


	Correctly inherit from Stream class


	Fix Content-Range header in 416 responses when using start/end options


	Fix Content-Range header missing from default 416 responses


	Fix redirect error when path contains raw non-URL characters


	Fix redirect when path starts with multiple forward slashes


	Ignore non-byte Range headers


	deps: http-errors@~1.5.0


	deps: range-parser@~1.2.0


	deps: statuses@~1.3.0


	perf: remove argument reassignment






	deps: serve-static@~1.11.1


	Add acceptRanges option


	Add cacheControl option


	Attempt to combine multiple ranges into single range


	Fix redirect error when req.url contains raw non-URL characters


	Ignore non-byte Range headers


	Use status code 301 for redirects


	deps: send@0.14.1






	deps: type-is@~1.6.13


	Fix type error when given invalid type to match against


	deps: mime-types@~2.1.11






	deps: vary@~1.1.0


	Only accept valid field names in the field argument






	perf: use strict equality when possible






4.13.4 / 2016-01-21


	deps: content-disposition@0.5.1


	perf: enable strict mode






	deps: cookie@0.1.5


	Throw on invalid values provided to serialize






	deps: depd@~1.1.0


	Support web browser loading


	perf: enable strict mode






	deps: escape-html@~1.0.3


	perf: enable strict mode


	perf: optimize string replacement


	perf: use faster string coercion






	deps: finalhandler@0.4.1


	deps: escape-html@~1.0.3






	deps: merge-descriptors@1.0.1


	perf: enable strict mode






	deps: methods@~1.1.2


	perf: enable strict mode






	deps: parseurl@~1.3.1


	perf: enable strict mode






	deps: proxy-addr@~1.0.10


	deps: ipaddr.js@1.0.5


	perf: enable strict mode






	deps: range-parser@~1.0.3


	perf: enable strict mode






	deps: send@0.13.1


	deps: depd@~1.1.0


	deps: destroy@~1.0.4


	deps: escape-html@~1.0.3


	deps: range-parser@~1.0.3






	deps: serve-static@~1.10.2


	deps: escape-html@~1.0.3


	deps: parseurl@~1.3.0


	deps: send@0.13.1










4.13.3 / 2015-08-02


	Fix infinite loop condition using mergeParams: true


	Fix inner numeric indices incorrectly altering parent req.params






4.13.2 / 2015-07-31


	deps: accepts@~1.2.12


	deps: mime-types@~2.1.4






	deps: array-flatten@1.1.1


	perf: enable strict mode






	deps: path-to-regexp@0.1.7


	Fix regression with escaped round brackets and matching groups






	deps: type-is@~1.6.6


	deps: mime-types@~2.1.4










4.13.1 / 2015-07-05


	deps: accepts@~1.2.10


	deps: mime-types@~2.1.2






	deps: qs@4.0.0


	Fix dropping parameters like hasOwnProperty


	Fix various parsing edge cases






	deps: type-is@~1.6.4


	deps: mime-types@~2.1.2


	perf: enable strict mode


	perf: remove argument reassignment










4.13.0 / 2015-06-20


	Add settings to debug output


	Fix res.format error when only default provided


	Fix issue where next('route') in app.param would incorrectly skip values


	Fix hiding platform issues with decodeURIComponent


	Only URIErrors are a 400






	Fix using * before params in routes


	Fix using capture groups before params in routes


	Simplify res.cookie to call res.append


	Use array-flatten module for flattening arrays


	deps: accepts@~1.2.9


	deps: mime-types@~2.1.1


	perf: avoid argument reassignment & argument slice


	perf: avoid negotiator recursive construction


	perf: enable strict mode


	perf: remove unnecessary bitwise operator






	deps: cookie@0.1.3


	perf: deduce the scope of try-catch deopt


	perf: remove argument reassignments






	deps: escape-html@1.0.2


	deps: etag@~1.7.0


	Always include entity length in ETags for hash length extensions


	Generate non-Stats ETags using MD5 only (no longer CRC32)


	Improve stat performance by removing hashing


	Improve support for JXcore


	Remove base64 padding in ETags to shorten


	Support “fake” stats objects in environments without fs


	Use MD5 instead of MD4 in weak ETags over 1KB






	deps: finalhandler@0.4.0


	Fix a false-positive when unpiping in Node.js 0.8


	Support statusCode property on Error objects


	Use unpipe module for unpiping requests


	deps: escape-html@1.0.2


	deps: on-finished@~2.3.0


	perf: enable strict mode


	perf: remove argument reassignment






	deps: fresh@0.3.0


	Add weak ETag matching support






	deps: on-finished@~2.3.0


	Add defined behavior for HTTP CONNECT requests


	Add defined behavior for HTTP Upgrade requests


	deps: ee-first@1.1.1






	deps: path-to-regexp@0.1.6


	deps: send@0.13.0


	Allow Node.js HTTP server to set Date response header


	Fix incorrectly removing Content-Location on 304 response


	Improve the default redirect response headers


	Send appropriate headers on default error response


	Use http-errors for standard emitted errors


	Use statuses instead of http module for status messages


	deps: escape-html@1.0.2


	deps: etag@~1.7.0


	deps: fresh@0.3.0


	deps: on-finished@~2.3.0


	perf: enable strict mode


	perf: remove unnecessary array allocations






	deps: serve-static@~1.10.0


	Add fallthrough option


	Fix reading options from options prototype


	Improve the default redirect response headers


	Malformed URLs now next() instead of 400


	deps: escape-html@1.0.2


	deps: send@0.13.0


	perf: enable strict mode


	perf: remove argument reassignment






	deps: type-is@~1.6.3


	deps: mime-types@~2.1.1


	perf: reduce try block size


	perf: remove bitwise operations






	perf: enable strict mode


	perf: isolate app.render try block


	perf: remove argument reassignments in application


	perf: remove argument reassignments in request prototype


	perf: remove argument reassignments in response prototype


	perf: remove argument reassignments in routing


	perf: remove argument reassignments in View


	perf: skip attempting to decode zero length string


	perf: use saved reference to http.STATUS_CODES






4.12.4 / 2015-05-17


	deps: accepts@~1.2.7


	deps: mime-types@~2.0.11


	deps: negotiator@0.5.3






	deps: debug@~2.2.0


	deps: ms@0.7.1






	deps: depd@~1.0.1


	deps: etag@~1.6.0


	Improve support for JXcore


	Support “fake” stats objects in environments without fs






	deps: finalhandler@0.3.6


	deps: debug@~2.2.0


	deps: on-finished@~2.2.1






	deps: on-finished@~2.2.1


	Fix isFinished(req) when data buffered






	deps: proxy-addr@~1.0.8


	deps: ipaddr.js@1.0.1






	deps: qs@2.4.2





	Fix allowing parameters like constructor





	deps: send@0.12.3


	deps: debug@~2.2.0


	deps: depd@~1.0.1


	deps: etag@~1.6.0


	deps: ms@0.7.1


	deps: on-finished@~2.2.1






	deps: serve-static@~1.9.3


	deps: send@0.12.3






	deps: type-is@~1.6.2


	deps: mime-types@~2.0.11










4.12.3 / 2015-03-17


	deps: accepts@~1.2.5


	deps: mime-types@~2.0.10






	deps: debug@~2.1.3


	Fix high intensity foreground color for bold


	deps: ms@0.7.0






	deps: finalhandler@0.3.4


	deps: debug@~2.1.3






	deps: proxy-addr@~1.0.7


	deps: ipaddr.js@0.1.9






	deps: qs@2.4.1


	Fix error when parameter hasOwnProperty is present






	deps: send@0.12.2


	Throw errors early for invalid extensions or index options


	deps: debug@~2.1.3






	deps: serve-static@~1.9.2


	deps: send@0.12.2






	deps: type-is@~1.6.1


	deps: mime-types@~2.0.10










4.12.2 / 2015-03-02


	Fix regression where "Request aborted" is logged using res.sendFile






4.12.1 / 2015-03-01


	Fix constructing application with non-configurable prototype properties


	Fix ECONNRESET errors from res.sendFile usage


	Fix req.host when using “trust proxy” hops count


	Fix req.protocol/req.secure when using “trust proxy” hops count


	Fix wrong code on aborted connections from res.sendFile


	deps: merge-descriptors@1.0.0






4.12.0 / 2015-02-23


	Fix "trust proxy" setting to inherit when app is mounted


	Generate ETags for all request responses


	No longer restricted to only responses for GET and HEAD requests






	Use content-type to parse Content-Type headers


	deps: accepts@~1.2.4


	Fix preference sorting to be stable for long acceptable lists


	deps: mime-types@~2.0.9


	deps: negotiator@0.5.1






	deps: cookie-signature@1.0.6


	deps: send@0.12.1


	Always read the stat size from the file


	Fix mutating passed-in options


	deps: mime@1.3.4






	deps: serve-static@~1.9.1


	deps: send@0.12.1






	deps: type-is@~1.6.0


	fix argument reassignment


	fix false-positives in hasBody Transfer-Encoding check


	support wildcard for both type and subtype (*/*)


	deps: mime-types@~2.0.9










4.11.2 / 2015-02-01


	Fix res.redirect double-calling res.end for HEAD requests


	deps: accepts@~1.2.3


	deps: mime-types@~2.0.8






	deps: proxy-addr@~1.0.6


	deps: ipaddr.js@0.1.8






	deps: type-is@~1.5.6


	deps: mime-types@~2.0.8










4.11.1 / 2015-01-20


	deps: send@0.11.1


	Fix root path disclosure






	deps: serve-static@~1.8.1


	Fix redirect loop in Node.js 0.11.14


	Fix root path disclosure


	deps: send@0.11.1










4.11.0 / 2015-01-13


	Add res.append(field, val) to append headers


	Deprecate leading : in name for app.param(name, fn)


	Deprecate req.param() – use req.params, req.body, or req.query instead


	Deprecate app.param(fn)


	Fix OPTIONS responses to include the HEAD method properly


	Fix res.sendFile not always detecting aborted connection


	Match routes iteratively to prevent stack overflows


	deps: accepts@~1.2.2


	deps: mime-types@~2.0.7


	deps: negotiator@0.5.0






	deps: send@0.11.0


	deps: debug@~2.1.1


	deps: etag@~1.5.1


	deps: ms@0.7.0


	deps: on-finished@~2.2.0






	deps: serve-static@~1.8.0


	deps: send@0.11.0










4.10.8 / 2015-01-13


	Fix crash from error within OPTIONS response handler


	deps: proxy-addr@~1.0.5


	deps: ipaddr.js@0.1.6










4.10.7 / 2015-01-04


	Fix Allow header for OPTIONS to not contain duplicate methods


	Fix incorrect “Request aborted” for res.sendFile when HEAD or 304


	deps: debug@~2.1.1


	deps: finalhandler@0.3.3


	deps: debug@~2.1.1


	deps: on-finished@~2.2.0






	deps: methods@~1.1.1


	deps: on-finished@~2.2.0


	deps: serve-static@~1.7.2


	Fix potential open redirect when mounted at root






	deps: type-is@~1.5.5


	deps: mime-types@~2.0.7










4.10.6 / 2014-12-12


	Fix exception in req.fresh/req.stale without response headers






4.10.5 / 2014-12-10


	Fix res.send double-calling res.end for HEAD requests


	deps: accepts@~1.1.4


	deps: mime-types@~2.0.4






	deps: type-is@~1.5.4


	deps: mime-types@~2.0.4










4.10.4 / 2014-11-24


	Fix res.sendfile logging standard write errors






4.10.3 / 2014-11-23


	Fix res.sendFile logging standard write errors


	deps: etag@~1.5.1


	deps: proxy-addr@~1.0.4


	deps: ipaddr.js@0.1.5






	deps: qs@2.3.3


	Fix arrayLimit behavior










4.10.2 / 2014-11-09


	Correctly invoke async router callback asynchronously


	deps: accepts@~1.1.3


	deps: mime-types@~2.0.3






	deps: type-is@~1.5.3


	deps: mime-types@~2.0.3










4.10.1 / 2014-10-28


	Fix handling of URLs containing :// in the path


	deps: qs@2.3.2


	Fix parsing of mixed objects and values










4.10.0 / 2014-10-23


	Add support for app.set('views', array)


	Views are looked up in sequence in array of directories






	Fix res.send(status) to mention res.sendStatus(status)


	Fix handling of invalid empty URLs


	Use content-disposition module for res.attachment/res.download


	Sends standards-compliant Content-Disposition header


	Full Unicode support






	Use path.resolve in view lookup


	deps: debug@~2.1.0


	Implement DEBUG_FD env variable support






	deps: depd@~1.0.0


	deps: etag@~1.5.0


	Improve string performance


	Slightly improve speed for weak ETags over 1KB






	deps: finalhandler@0.3.2


	Terminate in progress response only on error


	Use on-finished to determine request status


	deps: debug@~2.1.0


	deps: on-finished@~2.1.1






	deps: on-finished@~2.1.1


	Fix handling of pipelined requests






	deps: qs@2.3.0


	Fix parsing of mixed implicit and explicit arrays






	deps: send@0.10.1


	deps: debug@~2.1.0


	deps: depd@~1.0.0


	deps: etag@~1.5.0


	deps: on-finished@~2.1.1






	deps: serve-static@~1.7.1


	deps: send@0.10.1










4.9.8 / 2014-10-17


	Fix res.redirect body when redirect status specified


	deps: accepts@~1.1.2


	Fix error when media type has invalid parameter


	deps: negotiator@0.4.9










4.9.7 / 2014-10-10


	Fix using same param name in array of paths






4.9.6 / 2014-10-08


	deps: accepts@~1.1.1


	deps: mime-types@~2.0.2


	deps: negotiator@0.4.8






	deps: serve-static@~1.6.4


	Fix redirect loop when index file serving disabled






	deps: type-is@~1.5.2


	deps: mime-types@~2.0.2










4.9.5 / 2014-09-24


	deps: etag@~1.4.0


	deps: proxy-addr@~1.0.3


	Use forwarded npm module






	deps: send@0.9.3


	deps: etag@~1.4.0






	deps: serve-static@~1.6.3


	deps: send@0.9.3










4.9.4 / 2014-09-19


	deps: qs@2.2.4


	Fix issue with object keys starting with numbers truncated










4.9.3 / 2014-09-18


	deps: proxy-addr@~1.0.2


	Fix a global leak when multiple subnets are trusted


	deps: ipaddr.js@0.1.3










4.9.2 / 2014-09-17


	Fix regression for empty string path in app.use


	Fix router.use to accept array of middleware without path


	Improve error message for bad app.use arguments






4.9.1 / 2014-09-16


	Fix app.use to accept array of middleware without path


	deps: depd@0.4.5


	deps: etag@~1.3.1


	deps: send@0.9.2


	deps: depd@0.4.5


	deps: etag@~1.3.1


	deps: range-parser@~1.0.2






	deps: serve-static@~1.6.2


	deps: send@0.9.2










4.9.0 / 2014-09-08


	Add res.sendStatus


	Invoke callback for sendfile when client aborts


	Applies to res.sendFile, res.sendfile, and res.download


	err will be populated with request aborted error






	Support IP address host in req.subdomains


	Use etag to generate ETag headers


	deps: accepts@~1.1.0


	update mime-types






	deps: cookie-signature@1.0.5


	deps: debug@~2.0.0


	deps: finalhandler@0.2.0


	Set X-Content-Type-Options: nosniff header


	deps: debug@~2.0.0






	deps: fresh@0.2.4


	deps: media-typer@0.3.0


	Throw error when parameter format invalid on parse






	deps: qs@2.2.3


	Fix issue where first empty value in array is discarded






	deps: range-parser@~1.0.2


	deps: send@0.9.1


	Add lastModified option


	Use etag to generate ETag header


	deps: debug@~2.0.0


	deps: fresh@0.2.4






	deps: serve-static@~1.6.1


	Add lastModified option


	deps: send@0.9.1






	deps: type-is@~1.5.1


	fix hasbody to be true for content-length: 0


	deps: media-typer@0.3.0


	deps: mime-types@~2.0.1






	deps: vary@~1.0.0


	Accept valid Vary header string as field










4.8.8 / 2014-09-04


	deps: send@0.8.5


	Fix a path traversal issue when using root


	Fix malicious path detection for empty string path






	deps: serve-static@~1.5.4


	deps: send@0.8.5










4.8.7 / 2014-08-29


	deps: qs@2.2.2


	Remove unnecessary cloning










4.8.6 / 2014-08-27


	deps: qs@2.2.0


	Array parsing fix


	Performance improvements










4.8.5 / 2014-08-18


	deps: send@0.8.3


	deps: destroy@1.0.3


	deps: on-finished@2.1.0






	deps: serve-static@~1.5.3


	deps: send@0.8.3










4.8.4 / 2014-08-14


	deps: qs@1.2.2


	deps: send@0.8.2


	Work around fd leak in Node.js 0.10 for fs.ReadStream






	deps: serve-static@~1.5.2


	deps: send@0.8.2










4.8.3 / 2014-08-10


	deps: parseurl@~1.3.0


	deps: qs@1.2.1


	deps: serve-static@~1.5.1


	Fix parsing of weird req.originalUrl values


	deps: parseurl@~1.3.0


	deps: utils-merge@1.0.0










4.8.2 / 2014-08-07


	deps: qs@1.2.0


	Fix parsing array of objects










4.8.1 / 2014-08-06


	fix incorrect deprecation warnings on res.download


	deps: qs@1.1.0


	Accept urlencoded square brackets


	Accept empty values in implicit array notation










4.8.0 / 2014-08-05


	add res.sendFile


	accepts a file system path instead of a URL


	requires an absolute path or root option specified






	deprecate res.sendfile – use res.sendFile instead


	support mounted app as any argument to app.use()


	deps: qs@1.0.2


	Complete rewrite


	Limits array length to 20


	Limits object depth to 5


	Limits parameters to 1,000






	deps: send@0.8.1


	Add extensions option






	deps: serve-static@~1.5.0


	Add extensions option


	deps: send@0.8.1










4.7.4 / 2014-08-04


	fix res.sendfile regression for serving directory index files


	deps: send@0.7.4


	Fix incorrect 403 on Windows and Node.js 0.11


	Fix serving index files without root dir






	deps: serve-static@~1.4.4


	deps: send@0.7.4










4.7.3 / 2014-08-04


	deps: send@0.7.3


	Fix incorrect 403 on Windows and Node.js 0.11






	deps: serve-static@~1.4.3


	Fix incorrect 403 on Windows and Node.js 0.11


	deps: send@0.7.3










4.7.2 / 2014-07-27


	deps: depd@0.4.4


	Work-around v8 generating empty stack traces






	deps: send@0.7.2


	deps: depd@0.4.4






	deps: serve-static@~1.4.2






4.7.1 / 2014-07-26


	deps: depd@0.4.3


	Fix exception when global Error.stackTraceLimit is too low






	deps: send@0.7.1


	deps: depd@0.4.3






	deps: serve-static@~1.4.1






4.7.0 / 2014-07-25


	fix req.protocol for proxy-direct connections


	configurable query parser with app.set('query parser', parser)


	app.set('query parser', 'extended') parse with “qs” module


	app.set('query parser', 'simple') parse with “querystring” core module


	app.set('query parser', false) disable query string parsing


	app.set('query parser', true) enable simple parsing






	deprecate res.json(status, obj) – use res.status(status).json(obj) instead


	deprecate res.jsonp(status, obj) – use res.status(status).jsonp(obj) instead


	deprecate res.send(status, body) – use res.status(status).send(body) instead


	deps: debug@1.0.4


	deps: depd@0.4.2


	Add TRACE_DEPRECATION environment variable


	Remove non-standard grey color from color output


	Support --no-deprecation argument


	Support --trace-deprecation argument






	deps: finalhandler@0.1.0


	Respond after request fully read


	deps: debug@1.0.4






	deps: parseurl@~1.2.0


	Cache URLs based on original value


	Remove no-longer-needed URL mis-parse work-around


	Simplify the “fast-path” RegExp






	deps: send@0.7.0


	Add dotfiles option


	Cap maxAge value to 1 year


	deps: debug@1.0.4


	deps: depd@0.4.2






	deps: serve-static@~1.4.0


	deps: parseurl@~1.2.0


	deps: send@0.7.0






	perf: prevent multiple Buffer creation in res.send






4.6.1 / 2014-07-12


	fix subapp.mountpath regression for app.use(subapp)






4.6.0 / 2014-07-11


	accept multiple callbacks to app.use()


	add explicit “Rosetta Flash JSONP abuse” protection


	previous versions are not vulnerable; this is just explicit protection






	catch errors in multiple req.param(name, fn) handlers


	deprecate res.redirect(url, status) – use res.redirect(status, url) instead


	fix res.send(status, num) to send num as json (not error)


	remove unnecessary escaping when res.jsonp returns JSON response


	support non-string path in app.use(path, fn)


	supports array of paths


	supports RegExp






	router: fix optimization on router exit


	router: refactor location of try blocks


	router: speed up standard app.use(fn)


	deps: debug@1.0.3


	Add support for multiple wildcards in namespaces






	deps: finalhandler@0.0.3


	deps: debug@1.0.3






	deps: methods@1.1.0


	add CONNECT






	deps: parseurl@~1.1.3


	faster parsing of href-only URLs






	deps: path-to-regexp@0.1.3


	deps: send@0.6.0


	deps: debug@1.0.3






	deps: serve-static@~1.3.2


	deps: parseurl@~1.1.3


	deps: send@0.6.0






	perf: fix arguments reassign deopt in some res methods






4.5.1 / 2014-07-06


	fix routing regression when altering req.method






4.5.0 / 2014-07-04


	add deprecation message to non-plural req.accepts*


	add deprecation message to res.send(body, status)


	add deprecation message to res.vary()


	add headers option to res.sendfile


	use to set headers on successful file transfer






	add mergeParams option to Router


	merges req.params from parent routes






	add req.hostname – correct name for what req.host returns


	deprecate things with depd module


	deprecate req.host – use req.hostname instead


	fix behavior when handling request without routes


	fix handling when route.all is only route


	invoke router.param() only when route matches


	restore req.params after invoking router


	use finalhandler for final response handling


	use media-typer to alter content-type charset


	deps: accepts@~1.0.7


	deps: send@0.5.0


	Accept string for maxage (converted by ms)


	Include link in default redirect response






	deps: serve-static@~1.3.0


	Accept string for maxAge (converted by ms)


	Add setHeaders option


	Include HTML link in redirect response


	deps: send@0.5.0






	deps: type-is@~1.3.2






4.4.5 / 2014-06-26


	deps: cookie-signature@1.0.4


	fix for timing attacks










4.4.4 / 2014-06-20


	fix res.attachment Unicode filenames in Safari


	fix “trim prefix” debug message in express:router


	deps: accepts@~1.0.5


	deps: buffer-crc32@0.2.3






4.4.3 / 2014-06-11


	fix persistence of modified req.params[name] from app.param()


	deps: accepts@1.0.3


	deps: negotiator@0.4.6






	deps: debug@1.0.2


	deps: send@0.4.3


	Do not throw un-catchable error on file open race condition


	Use escape-html for HTML escaping


	deps: debug@1.0.2


	deps: finished@1.2.2


	deps: fresh@0.2.2






	deps: serve-static@1.2.3


	Do not throw un-catchable error on file open race condition


	deps: send@0.4.3










4.4.2 / 2014-06-09


	fix catching errors from top-level handlers


	use vary module for res.vary


	deps: debug@1.0.1


	deps: proxy-addr@1.0.1


	deps: send@0.4.2


	fix “event emitter leak” warnings


	deps: debug@1.0.1


	deps: finished@1.2.1






	deps: serve-static@1.2.2


	fix “event emitter leak” warnings


	deps: send@0.4.2






	deps: type-is@1.2.1






4.4.1 / 2014-06-02


	deps: methods@1.0.1


	deps: send@0.4.1


	Send max-age in Cache-Control in correct format






	deps: serve-static@1.2.1


	use escape-html for escaping


	deps: send@0.4.1










4.4.0 / 2014-05-30


	custom etag control with app.set('etag', val)


	app.set('etag', function(body, encoding){ return '"etag"' }) custom etag generation


	app.set('etag', 'weak') weak tag


	app.set('etag', 'strong') strong etag


	app.set('etag', false) turn off


	app.set('etag', true) standard etag






	mark res.send ETag as weak and reduce collisions


	update accepts to 1.0.2


	Fix interpretation when header not in request






	update send to 0.4.0


	Calculate ETag with md5 for reduced collisions


	Ignore stream errors after request ends


	deps: debug@0.8.1






	update serve-static to 1.2.0


	Calculate ETag with md5 for reduced collisions


	Ignore stream errors after request ends


	deps: send@0.4.0










4.3.2 / 2014-05-28


	fix handling of errors from router.param() callbacks






4.3.1 / 2014-05-23


	revert “fix behavior of multiple app.VERB for the same path”


	this caused a regression in the order of route execution










4.3.0 / 2014-05-21


	add req.baseUrl to access the path stripped from req.url in routes


	fix behavior of multiple app.VERB for the same path


	fix issue routing requests among sub routers


	invoke router.param() only when necessary instead of every match


	proper proxy trust with app.set('trust proxy', trust)


	app.set('trust proxy', 1) trust first hop


	app.set('trust proxy', 'loopback') trust loopback addresses


	app.set('trust proxy', '10.0.0.1') trust single IP


	app.set('trust proxy', '10.0.0.1/16') trust subnet


	app.set('trust proxy', '10.0.0.1, 10.0.0.2') trust list


	app.set('trust proxy', false) turn off


	app.set('trust proxy', true) trust everything






	set proper charset in Content-Type for res.send


	update type-is to 1.2.0


	support suffix matching










4.2.0 / 2014-05-11


	deprecate app.del() – use app.delete() instead


	deprecate res.json(obj, status) – use res.json(status, obj) instead


	the edge-case res.json(status, num) requires res.status(status).json(num)






	deprecate res.jsonp(obj, status) – use res.jsonp(status, obj) instead


	the edge-case res.jsonp(status, num) requires res.status(status).jsonp(num)






	fix req.next when inside router instance


	include ETag header in HEAD requests


	keep previous Content-Type for res.jsonp


	support PURGE method


	add app.purge


	add router.purge


	include PURGE in app.all






	update debug to 0.8.0


	add enable() method


	change from stderr to stdout






	update methods to 1.0.0


	add PURGE










4.1.2 / 2014-05-08


	fix req.host for IPv6 literals


	fix res.jsonp error if callback param is object






4.1.1 / 2014-04-27


	fix package.json to reflect supported node version






4.1.0 / 2014-04-24


	pass options from res.sendfile to send


	preserve casing of headers in res.header and res.set


	support unicode file names in res.attachment and res.download


	update accepts to 1.0.1


	deps: negotiator@0.4.0






	update cookie to 0.1.2


	Fix for maxAge == 0


	made compat with expires field






	update send to 0.3.0


	Accept API options in options object


	Coerce option types


	Control whether to generate etags


	Default directory access to 403 when index disabled


	Fix sending files with dots without root set


	Include file path in etag


	Make “Can’t set headers after they are sent.” catchable


	Send full entity-body for multi range requests


	Set etags to “weak”


	Support “If-Range” header


	Support multiple index paths


	deps: mime@1.2.11






	update serve-static to 1.1.0


	Accept options directly to send module


	Resolve relative paths at middleware setup


	Use parseurl to parse the URL from request


	deps: send@0.3.0






	update type-is to 1.1.0


	add non-array values support


	add multipart as a shorthand










4.0.0 / 2014-04-09


	remove:


	node 0.8 support


	connect and connect’s patches except for charset handling


	express(1) - moved to express-generator [https://github.com/expressjs/generator]


	express.createServer() - it has been deprecated for a long time. Use express()


	app.configure - use logic in your own app code


	app.router - is removed


	req.auth - use basic-auth instead


	req.accepted* - use req.accepts*() instead


	res.location - relative URL resolution is removed


	res.charset - include the charset in the content type when using res.set()


	all bundled middleware except static






	change:


	app.route -> app.mountpath when mounting an express app in another express app


	json spaces no longer enabled by default in development


	req.accepts* -> req.accepts*s - i.e. req.acceptsEncoding -> req.acceptsEncodings


	req.params is now an object instead of an array


	res.locals is no longer a function. It is a plain js object. Treat it as such.


	res.headerSent -> res.headersSent to match node.js ServerResponse object






	refactor:


	req.accepts* with accepts [https://github.com/expressjs/accepts]


	req.is with type-is [https://github.com/expressjs/type-is]


	path-to-regexp [https://github.com/component/path-to-regexp]






	add:


	app.router() - returns the app Router instance


	app.route() - Proxy to the app’s Router#route() method to create a new route


	Router & Route - public API










3.21.2 / 2015-07-31


	deps: connect@2.30.2


	deps: body-parser@~1.13.3


	deps: compression@~1.5.2


	deps: errorhandler@~1.4.2


	deps: method-override@~2.3.5


	deps: serve-index@~1.7.2


	deps: type-is@~1.6.6


	deps: vhost@~3.0.1






	deps: vary@~1.0.1


	Fix setting empty header from empty field


	perf: enable strict mode


	perf: remove argument reassignments










3.21.1 / 2015-07-05


	deps: basic-auth@~1.0.3


	deps: connect@2.30.1


	deps: body-parser@~1.13.2


	deps: compression@~1.5.1


	deps: errorhandler@~1.4.1


	deps: morgan@~1.6.1


	deps: pause@0.1.0


	deps: qs@4.0.0


	deps: serve-index@~1.7.1


	deps: type-is@~1.6.4










3.21.0 / 2015-06-18


	deps: basic-auth@1.0.2


	perf: enable strict mode


	perf: hoist regular expression


	perf: parse with regular expressions


	perf: remove argument reassignment






	deps: connect@2.30.0


	deps: body-parser@~1.13.1


	deps: bytes@2.1.0


	deps: compression@~1.5.0


	deps: cookie@0.1.3


	deps: cookie-parser@~1.3.5


	deps: csurf@~1.8.3


	deps: errorhandler@~1.4.0


	deps: express-session@~1.11.3


	deps: finalhandler@0.4.0


	deps: fresh@0.3.0


	deps: morgan@~1.6.0


	deps: serve-favicon@~2.3.0


	deps: serve-index@~1.7.0


	deps: serve-static@~1.10.0


	deps: type-is@~1.6.3






	deps: cookie@0.1.3


	perf: deduce the scope of try-catch deopt


	perf: remove argument reassignments






	deps: escape-html@1.0.2


	deps: etag@~1.7.0


	Always include entity length in ETags for hash length extensions


	Generate non-Stats ETags using MD5 only (no longer CRC32)


	Improve stat performance by removing hashing


	Improve support for JXcore


	Remove base64 padding in ETags to shorten


	Support “fake” stats objects in environments without fs


	Use MD5 instead of MD4 in weak ETags over 1KB






	deps: fresh@0.3.0


	Add weak ETag matching support






	deps: mkdirp@0.5.1


	Work in global strict mode






	deps: send@0.13.0


	Allow Node.js HTTP server to set Date response header


	Fix incorrectly removing Content-Location on 304 response


	Improve the default redirect response headers


	Send appropriate headers on default error response


	Use http-errors for standard emitted errors


	Use statuses instead of http module for status messages


	deps: escape-html@1.0.2


	deps: etag@~1.7.0


	deps: fresh@0.3.0


	deps: on-finished@~2.3.0


	perf: enable strict mode


	perf: remove unnecessary array allocations










3.20.3 / 2015-05-17


	deps: connect@2.29.2


	deps: body-parser@~1.12.4


	deps: compression@~1.4.4


	deps: connect-timeout@~1.6.2


	deps: debug@~2.2.0


	deps: depd@~1.0.1


	deps: errorhandler@~1.3.6


	deps: finalhandler@0.3.6


	deps: method-override@~2.3.3


	deps: morgan@~1.5.3


	deps: qs@2.4.2


	deps: response-time@~2.3.1


	deps: serve-favicon@~2.2.1


	deps: serve-index@~1.6.4


	deps: serve-static@~1.9.3


	deps: type-is@~1.6.2






	deps: debug@~2.2.0


	deps: ms@0.7.1






	deps: depd@~1.0.1


	deps: proxy-addr@~1.0.8


	deps: ipaddr.js@1.0.1






	deps: send@0.12.3


	deps: debug@~2.2.0


	deps: depd@~1.0.1


	deps: etag@~1.6.0


	deps: ms@0.7.1


	deps: on-finished@~2.2.1










3.20.2 / 2015-03-16


	deps: connect@2.29.1


	deps: body-parser@~1.12.2


	deps: compression@~1.4.3


	deps: connect-timeout@~1.6.1


	deps: debug@~2.1.3


	deps: errorhandler@~1.3.5


	deps: express-session@~1.10.4


	deps: finalhandler@0.3.4


	deps: method-override@~2.3.2


	deps: morgan@~1.5.2


	deps: qs@2.4.1


	deps: serve-index@~1.6.3


	deps: serve-static@~1.9.2


	deps: type-is@~1.6.1






	deps: debug@~2.1.3


	Fix high intensity foreground color for bold


	deps: ms@0.7.0






	deps: merge-descriptors@1.0.0


	deps: proxy-addr@~1.0.7


	deps: ipaddr.js@0.1.9






	deps: send@0.12.2


	Throw errors early for invalid extensions or index options


	deps: debug@~2.1.3










3.20.1 / 2015-02-28


	Fix req.host when using “trust proxy” hops count


	Fix req.protocol/req.secure when using “trust proxy” hops count






3.20.0 / 2015-02-18


	Fix "trust proxy" setting to inherit when app is mounted


	Generate ETags for all request responses


	No longer restricted to only responses for GET and HEAD requests






	Use content-type to parse Content-Type headers


	deps: connect@2.29.0


	Use content-type to parse Content-Type headers


	deps: body-parser@~1.12.0


	deps: compression@~1.4.1


	deps: connect-timeout@~1.6.0


	deps: cookie-parser@~1.3.4


	deps: cookie-signature@1.0.6


	deps: csurf@~1.7.0


	deps: errorhandler@~1.3.4


	deps: express-session@~1.10.3


	deps: http-errors@~1.3.1


	deps: response-time@~2.3.0


	deps: serve-index@~1.6.2


	deps: serve-static@~1.9.1


	deps: type-is@~1.6.0






	deps: cookie-signature@1.0.6


	deps: send@0.12.1


	Always read the stat size from the file


	Fix mutating passed-in options


	deps: mime@1.3.4










3.19.2 / 2015-02-01


	deps: connect@2.28.3


	deps: compression@~1.3.1


	deps: csurf@~1.6.6


	deps: errorhandler@~1.3.3


	deps: express-session@~1.10.2


	deps: serve-index@~1.6.1


	deps: type-is@~1.5.6






	deps: proxy-addr@~1.0.6


	deps: ipaddr.js@0.1.8










3.19.1 / 2015-01-20


	deps: connect@2.28.2


	deps: body-parser@~1.10.2


	deps: serve-static@~1.8.1






	deps: send@0.11.1


	Fix root path disclosure










3.19.0 / 2015-01-09


	Fix OPTIONS responses to include the HEAD method property


	Use readline for prompt in express(1)


	deps: commander@2.6.0


	deps: connect@2.28.1


	deps: body-parser@~1.10.1


	deps: compression@~1.3.0


	deps: connect-timeout@~1.5.0


	deps: csurf@~1.6.4


	deps: debug@~2.1.1


	deps: errorhandler@~1.3.2


	deps: express-session@~1.10.1


	deps: finalhandler@0.3.3


	deps: method-override@~2.3.1


	deps: morgan@~1.5.1


	deps: serve-favicon@~2.2.0


	deps: serve-index@~1.6.0


	deps: serve-static@~1.8.0


	deps: type-is@~1.5.5






	deps: debug@~2.1.1


	deps: methods@~1.1.1


	deps: proxy-addr@~1.0.5


	deps: ipaddr.js@0.1.6






	deps: send@0.11.0


	deps: debug@~2.1.1


	deps: etag@~1.5.1


	deps: ms@0.7.0


	deps: on-finished@~2.2.0










3.18.6 / 2014-12-12


	Fix exception in req.fresh/req.stale without response headers






3.18.5 / 2014-12-11


	deps: connect@2.27.6


	deps: compression@~1.2.2


	deps: express-session@~1.9.3


	deps: http-errors@~1.2.8


	deps: serve-index@~1.5.3


	deps: type-is@~1.5.4










3.18.4 / 2014-11-23


	deps: connect@2.27.4


	deps: body-parser@~1.9.3


	deps: compression@~1.2.1


	deps: errorhandler@~1.2.3


	deps: express-session@~1.9.2


	deps: qs@2.3.3


	deps: serve-favicon@~2.1.7


	deps: serve-static@~1.5.1


	deps: type-is@~1.5.3






	deps: etag@~1.5.1


	deps: proxy-addr@~1.0.4


	deps: ipaddr.js@0.1.5










3.18.3 / 2014-11-09


	deps: connect@2.27.3


	Correctly invoke async callback asynchronously


	deps: csurf@~1.6.3










3.18.2 / 2014-10-28


	deps: connect@2.27.2


	Fix handling of URLs containing :// in the path


	deps: body-parser@~1.9.2


	deps: qs@2.3.2










3.18.1 / 2014-10-22


	Fix internal utils.merge deprecation warnings


	deps: connect@2.27.1


	deps: body-parser@~1.9.1


	deps: express-session@~1.9.1


	deps: finalhandler@0.3.2


	deps: morgan@~1.4.1


	deps: qs@2.3.0


	deps: serve-static@~1.7.1






	deps: send@0.10.1


	deps: on-finished@~2.1.1










3.18.0 / 2014-10-17


	Use content-disposition module for res.attachment/res.download


	Sends standards-compliant Content-Disposition header


	Full Unicode support






	Use etag module to generate ETag headers


	deps: connect@2.27.0


	Use http-errors module for creating errors


	Use utils-merge module for merging objects


	deps: body-parser@~1.9.0


	deps: compression@~1.2.0


	deps: connect-timeout@~1.4.0


	deps: debug@~2.1.0


	deps: depd@~1.0.0


	deps: express-session@~1.9.0


	deps: finalhandler@0.3.1


	deps: method-override@~2.3.0


	deps: morgan@~1.4.0


	deps: response-time@~2.2.0


	deps: serve-favicon@~2.1.6


	deps: serve-index@~1.5.0


	deps: serve-static@~1.7.0






	deps: debug@~2.1.0


	Implement DEBUG_FD env variable support






	deps: depd@~1.0.0


	deps: send@0.10.0


	deps: debug@~2.1.0


	deps: depd@~1.0.0


	deps: etag@~1.5.0










3.17.8 / 2014-10-15


	deps: connect@2.26.6


	deps: compression@~1.1.2


	deps: csurf@~1.6.2


	deps: errorhandler@~1.2.2










3.17.7 / 2014-10-08


	deps: connect@2.26.5


	Fix accepting non-object arguments to logger


	deps: serve-static@~1.6.4










3.17.6 / 2014-10-02


	deps: connect@2.26.4


	deps: morgan@~1.3.2


	deps: type-is@~1.5.2










3.17.5 / 2014-09-24


	deps: connect@2.26.3


	deps: body-parser@~1.8.4


	deps: serve-favicon@~2.1.5


	deps: serve-static@~1.6.3






	deps: proxy-addr@~1.0.3


	Use forwarded npm module






	deps: send@0.9.3


	deps: etag@~1.4.0










3.17.4 / 2014-09-19


	deps: connect@2.26.2


	deps: body-parser@~1.8.3


	deps: qs@2.2.4










3.17.3 / 2014-09-18


	deps: proxy-addr@~1.0.2


	Fix a global leak when multiple subnets are trusted


	deps: ipaddr.js@0.1.3










3.17.2 / 2014-09-15


	Use crc instead of buffer-crc32 for speed


	deps: connect@2.26.1


	deps: body-parser@~1.8.2


	deps: depd@0.4.5


	deps: express-session@~1.8.2


	deps: morgan@~1.3.1


	deps: serve-favicon@~2.1.3


	deps: serve-static@~1.6.2






	deps: depd@0.4.5


	deps: send@0.9.2


	deps: depd@0.4.5


	deps: etag@~1.3.1


	deps: range-parser@~1.0.2










3.17.1 / 2014-09-08


	Fix error in req.subdomains on empty host






3.17.0 / 2014-09-08


	Support X-Forwarded-Host in req.subdomains


	Support IP address host in req.subdomains


	deps: connect@2.26.0


	deps: body-parser@~1.8.1


	deps: compression@~1.1.0


	deps: connect-timeout@~1.3.0


	deps: cookie-parser@~1.3.3


	deps: cookie-signature@1.0.5


	deps: csurf@~1.6.1


	deps: debug@~2.0.0


	deps: errorhandler@~1.2.0


	deps: express-session@~1.8.1


	deps: finalhandler@0.2.0


	deps: fresh@0.2.4


	deps: media-typer@0.3.0


	deps: method-override@~2.2.0


	deps: morgan@~1.3.0


	deps: qs@2.2.3


	deps: serve-favicon@~2.1.3


	deps: serve-index@~1.2.1


	deps: serve-static@~1.6.1


	deps: type-is@~1.5.1


	deps: vhost@~3.0.0






	deps: cookie-signature@1.0.5


	deps: debug@~2.0.0


	deps: fresh@0.2.4


	deps: media-typer@0.3.0


	Throw error when parameter format invalid on parse






	deps: range-parser@~1.0.2


	deps: send@0.9.1


	Add lastModified option


	Use etag to generate ETag header


	deps: debug@~2.0.0


	deps: fresh@0.2.4






	deps: vary@~1.0.0


	Accept valid Vary header string as field










3.16.10 / 2014-09-04


	deps: connect@2.25.10


	deps: serve-static@~1.5.4






	deps: send@0.8.5


	Fix a path traversal issue when using root


	Fix malicious path detection for empty string path










3.16.9 / 2014-08-29


	deps: connect@2.25.9


	deps: body-parser@~1.6.7


	deps: qs@2.2.2










3.16.8 / 2014-08-27


	deps: connect@2.25.8


	deps: body-parser@~1.6.6


	deps: csurf@~1.4.1


	deps: qs@2.2.0










3.16.7 / 2014-08-18


	deps: connect@2.25.7


	deps: body-parser@~1.6.5


	deps: express-session@~1.7.6


	deps: morgan@~1.2.3


	deps: serve-static@~1.5.3






	deps: send@0.8.3


	deps: destroy@1.0.3


	deps: on-finished@2.1.0










3.16.6 / 2014-08-14


	deps: connect@2.25.6


	deps: body-parser@~1.6.4


	deps: qs@1.2.2


	deps: serve-static@~1.5.2






	deps: send@0.8.2


	Work around fd leak in Node.js 0.10 for fs.ReadStream










3.16.5 / 2014-08-11


	deps: connect@2.25.5


	Fix backwards compatibility in logger










3.16.4 / 2014-08-10


	Fix original URL parsing in res.location


	deps: connect@2.25.4


	Fix query middleware breaking with argument


	deps: body-parser@~1.6.3


	deps: compression@~1.0.11


	deps: connect-timeout@~1.2.2


	deps: express-session@~1.7.5


	deps: method-override@~2.1.3


	deps: on-headers@~1.0.0


	deps: parseurl@~1.3.0


	deps: qs@1.2.1


	deps: response-time@~2.0.1


	deps: serve-index@~1.1.6


	deps: serve-static@~1.5.1






	deps: parseurl@~1.3.0






3.16.3 / 2014-08-07


	deps: connect@2.25.3


	deps: multiparty@3.3.2










3.16.2 / 2014-08-07


	deps: connect@2.25.2


	deps: body-parser@~1.6.2


	deps: qs@1.2.0










3.16.1 / 2014-08-06


	deps: connect@2.25.1


	deps: body-parser@~1.6.1


	deps: qs@1.1.0










3.16.0 / 2014-08-05


	deps: connect@2.25.0


	deps: body-parser@~1.6.0


	deps: compression@~1.0.10


	deps: csurf@~1.4.0


	deps: express-session@~1.7.4


	deps: qs@1.0.2


	deps: serve-static@~1.5.0






	deps: send@0.8.1


	Add extensions option










3.15.3 / 2014-08-04


	fix res.sendfile regression for serving directory index files


	deps: connect@2.24.3


	deps: serve-index@~1.1.5


	deps: serve-static@~1.4.4






	deps: send@0.7.4


	Fix incorrect 403 on Windows and Node.js 0.11


	Fix serving index files without root dir










3.15.2 / 2014-07-27


	deps: connect@2.24.2


	deps: body-parser@~1.5.2


	deps: depd@0.4.4


	deps: express-session@~1.7.2


	deps: morgan@~1.2.2


	deps: serve-static@~1.4.2






	deps: depd@0.4.4


	Work-around v8 generating empty stack traces






	deps: send@0.7.2


	deps: depd@0.4.4










3.15.1 / 2014-07-26


	deps: connect@2.24.1


	deps: body-parser@~1.5.1


	deps: depd@0.4.3


	deps: express-session@~1.7.1


	deps: morgan@~1.2.1


	deps: serve-index@~1.1.4


	deps: serve-static@~1.4.1






	deps: depd@0.4.3


	Fix exception when global Error.stackTraceLimit is too low






	deps: send@0.7.1


	deps: depd@0.4.3










3.15.0 / 2014-07-22


	Fix req.protocol for proxy-direct connections


	Pass options from res.sendfile to send


	deps: connect@2.24.0


	deps: body-parser@~1.5.0


	deps: compression@~1.0.9


	deps: connect-timeout@~1.2.1


	deps: debug@1.0.4


	deps: depd@0.4.2


	deps: express-session@~1.7.0


	deps: finalhandler@0.1.0


	deps: method-override@~2.1.2


	deps: morgan@~1.2.0


	deps: multiparty@3.3.1


	deps: parseurl@~1.2.0


	deps: serve-static@~1.4.0






	deps: debug@1.0.4


	deps: depd@0.4.2


	Add TRACE_DEPRECATION environment variable


	Remove non-standard grey color from color output


	Support --no-deprecation argument


	Support --trace-deprecation argument






	deps: parseurl@~1.2.0


	Cache URLs based on original value


	Remove no-longer-needed URL mis-parse work-around


	Simplify the “fast-path” RegExp






	deps: send@0.7.0


	Add dotfiles option


	Cap maxAge value to 1 year


	deps: debug@1.0.4


	deps: depd@0.4.2










3.14.0 / 2014-07-11


	add explicit “Rosetta Flash JSONP abuse” protection


	previous versions are not vulnerable; this is just explicit protection






	deprecate res.redirect(url, status) – use res.redirect(status, url) instead


	fix res.send(status, num) to send num as json (not error)


	remove unnecessary escaping when res.jsonp returns JSON response


	deps: basic-auth@1.0.0


	support empty password


	support empty username






	deps: connect@2.23.0


	deps: debug@1.0.3


	deps: express-session@~1.6.4


	deps: method-override@~2.1.0


	deps: parseurl@~1.1.3


	deps: serve-static@~1.3.1






	deps: debug@1.0.3


	Add support for multiple wildcards in namespaces






	deps: methods@1.1.0


	add CONNECT






	deps: parseurl@~1.1.3


	faster parsing of href-only URLs










3.13.0 / 2014-07-03


	add deprecation message to app.configure


	add deprecation message to req.auth


	use basic-auth to parse Authorization header


	deps: connect@2.22.0


	deps: csurf@~1.3.0


	deps: express-session@~1.6.1


	deps: multiparty@3.3.0


	deps: serve-static@~1.3.0






	deps: send@0.5.0


	Accept string for maxage (converted by ms)


	Include link in default redirect response










3.12.1 / 2014-06-26


	deps: connect@2.21.1


	deps: cookie-parser@1.3.2


	deps: cookie-signature@1.0.4


	deps: express-session@~1.5.2


	deps: type-is@~1.3.2






	deps: cookie-signature@1.0.4


	fix for timing attacks










3.12.0 / 2014-06-21


	use media-typer to alter content-type charset


	deps: connect@2.21.0


	deprecate connect(middleware) – use app.use(middleware) instead


	deprecate connect.createServer() – use connect() instead


	fix res.setHeader() patch to work with with get -> append -> set pattern


	deps: compression@~1.0.8


	deps: errorhandler@~1.1.1


	deps: express-session@~1.5.0


	deps: serve-index@~1.1.3










3.11.0 / 2014-06-19


	deprecate things with depd module


	deps: buffer-crc32@0.2.3


	deps: connect@2.20.2


	deprecate verify option to json – use body-parser npm module instead


	deprecate verify option to urlencoded – use body-parser npm module instead


	deprecate things with depd module


	use finalhandler for final response handling


	use media-typer to parse content-type for charset


	deps: body-parser@1.4.3


	deps: connect-timeout@1.1.1


	deps: cookie-parser@1.3.1


	deps: csurf@1.2.2


	deps: errorhandler@1.1.0


	deps: express-session@1.4.0


	deps: multiparty@3.2.9


	deps: serve-index@1.1.2


	deps: type-is@1.3.1


	deps: vhost@2.0.0










3.10.5 / 2014-06-11


	deps: connect@2.19.6


	deps: body-parser@1.3.1


	deps: compression@1.0.7


	deps: debug@1.0.2


	deps: serve-index@1.1.1


	deps: serve-static@1.2.3






	deps: debug@1.0.2


	deps: send@0.4.3


	Do not throw un-catchable error on file open race condition


	Use escape-html for HTML escaping


	deps: debug@1.0.2


	deps: finished@1.2.2


	deps: fresh@0.2.2










3.10.4 / 2014-06-09


	deps: connect@2.19.5


	fix “event emitter leak” warnings


	deps: csurf@1.2.1


	deps: debug@1.0.1


	deps: serve-static@1.2.2


	deps: type-is@1.2.1






	deps: debug@1.0.1


	deps: send@0.4.2


	fix “event emitter leak” warnings


	deps: finished@1.2.1


	deps: debug@1.0.1










3.10.3 / 2014-06-05


	use vary module for res.vary


	deps: connect@2.19.4


	deps: errorhandler@1.0.2


	deps: method-override@2.0.2


	deps: serve-favicon@2.0.1






	deps: debug@1.0.0






3.10.2 / 2014-06-03


	deps: connect@2.19.3


	deps: compression@1.0.6










3.10.1 / 2014-06-03


	deps: connect@2.19.2


	deps: compression@1.0.4






	deps: proxy-addr@1.0.1






3.10.0 / 2014-06-02


	deps: connect@2.19.1


	deprecate methodOverride() – use method-override npm module instead


	deps: body-parser@1.3.0


	deps: method-override@2.0.1


	deps: multiparty@3.2.8


	deps: response-time@2.0.0


	deps: serve-static@1.2.1






	deps: methods@1.0.1


	deps: send@0.4.1


	Send max-age in Cache-Control in correct format










3.9.0 / 2014-05-30


	custom etag control with app.set('etag', val)


	app.set('etag', function(body, encoding){ return '"etag"' }) custom etag generation


	app.set('etag', 'weak') weak tag


	app.set('etag', 'strong') strong etag


	app.set('etag', false) turn off


	app.set('etag', true) standard etag






	Include ETag in HEAD requests


	mark res.send ETag as weak and reduce collisions


	update connect to 2.18.0


	deps: compression@1.0.3


	deps: serve-index@1.1.0


	deps: serve-static@1.2.0






	update send to 0.4.0


	Calculate ETag with md5 for reduced collisions


	Ignore stream errors after request ends


	deps: debug@0.8.1










3.8.1 / 2014-05-27


	update connect to 2.17.3


	deps: body-parser@1.2.2


	deps: express-session@1.2.1


	deps: method-override@1.0.2










3.8.0 / 2014-05-21


	keep previous Content-Type for res.jsonp


	set proper charset in Content-Type for res.send


	update connect to 2.17.1


	fix res.charset appending charset when content-type has one


	deps: express-session@1.2.0


	deps: morgan@1.1.1


	deps: serve-index@1.0.3










3.7.0 / 2014-05-18


	proper proxy trust with app.set('trust proxy', trust)


	app.set('trust proxy', 1) trust first hop


	app.set('trust proxy', 'loopback') trust loopback addresses


	app.set('trust proxy', '10.0.0.1') trust single IP


	app.set('trust proxy', '10.0.0.1/16') trust subnet


	app.set('trust proxy', '10.0.0.1, 10.0.0.2') trust list


	app.set('trust proxy', false) turn off


	app.set('trust proxy', true) trust everything






	update connect to 2.16.2


	deprecate res.headerSent – use res.headersSent


	deprecate res.on("header") – use on-headers module instead


	fix edge-case in res.appendHeader that would append in wrong order


	json: use body-parser


	urlencoded: use body-parser


	dep: bytes@1.0.0


	dep: cookie-parser@1.1.0


	dep: csurf@1.2.0


	dep: express-session@1.1.0


	dep: method-override@1.0.1










3.6.0 / 2014-05-09


	deprecate app.del() – use app.delete() instead


	deprecate res.json(obj, status) – use res.json(status, obj) instead


	the edge-case res.json(status, num) requires res.status(status).json(num)






	deprecate res.jsonp(obj, status) – use res.jsonp(status, obj) instead


	the edge-case res.jsonp(status, num) requires res.status(status).jsonp(num)






	support PURGE method


	add app.purge


	add router.purge


	include PURGE in app.all






	update connect to 2.15.0


	Add res.appendHeader


	Call error stack even when response has been sent


	Patch res.headerSent to return Boolean


	Patch res.headersSent for node.js 0.8


	Prevent default 404 handler after response sent


	dep: compression@1.0.2


	dep: connect-timeout@1.1.0


	dep: debug@^0.8.0


	dep: errorhandler@1.0.1


	dep: express-session@1.0.4


	dep: morgan@1.0.1


	dep: serve-favicon@2.0.0


	dep: serve-index@1.0.2






	update debug to 0.8.0


	add enable() method


	change from stderr to stdout






	update methods to 1.0.0


	add PURGE






	update mkdirp to 0.5.0






3.5.3 / 2014-05-08


	fix req.host for IPv6 literals


	fix res.jsonp error if callback param is object






3.5.2 / 2014-04-24


	update connect to 2.14.5


	update cookie to 0.1.2


	update mkdirp to 0.4.0


	update send to 0.3.0






3.5.1 / 2014-03-25


	pin less-middleware in generated app






3.5.0 / 2014-03-06


	bump deps






3.4.8 / 2014-01-13


	prevent incorrect automatic OPTIONS responses #1868 @dpatti


	update binary and examples for jade 1.0 #1876 @yossi, #1877 @reqshark, #1892 @matheusazzi


	throw 400 in case of malformed paths @rlidwka






3.4.7 / 2013-12-10


	update connect






3.4.6 / 2013-12-01


	update connect (raw-body)






3.4.5 / 2013-11-27


	update connect


	res.location: remove leading ./ #1802 @kapouer


	res.redirect: fix `res.redirect(’toString’) #1829 @michaelficarra


	res.send: always send ETag when content-length > 0


	router: add Router.all() method






3.4.4 / 2013-10-29


	update connect


	update supertest


	update methods


	express(1): replace bodyParser() with urlencoded() and json() #1795 @chirag04






3.4.3 / 2013-10-23


	update connect






3.4.2 / 2013-10-18


	update connect


	downgrade commander






3.4.1 / 2013-10-15


	update connect


	update commander


	jsonp: check if callback is a function


	router: wrap encodeURIComponent in a try/catch #1735 (@lxe)


	res.format: now includes charset @1747 (@sorribas)


	res.links: allow multiple calls @1746 (@sorribas)






3.4.0 / 2013-09-07


	add res.vary(). Closes #1682


	update connect






3.3.8 / 2013-09-02


	update connect






3.3.7 / 2013-08-28


	update connect






3.3.6 / 2013-08-27


	Revert “remove charset from json responses. Closes #1631” (causes issues in some clients)


	add: req.accepts take an argument list






3.3.4 / 2013-07-08


	update send and connect






3.3.3 / 2013-07-04


	update connect






3.3.2 / 2013-07-03


	update connect


	update send


	remove .version export






3.3.1 / 2013-06-27


	update connect






3.3.0 / 2013-06-26


	update connect


	add support for multiple X-Forwarded-Proto values. Closes #1646


	change: remove charset from json responses. Closes #1631


	change: return actual booleans from req.accept* functions


	fix jsonp callback array throw






3.2.6 / 2013-06-02


	update connect






3.2.5 / 2013-05-21


	update connect


	update node-cookie


	add: throw a meaningful error when there is no default engine


	change generation of ETags with res.send() to GET requests only. Closes #1619






3.2.4 / 2013-05-09


	fix req.subdomains when no Host is present


	fix req.host when no Host is present, return undefined






3.2.3 / 2013-05-07


	update connect / qs






3.2.2 / 2013-05-03


	update qs






3.2.1 / 2013-04-29


	add app.VERB() paths array deprecation warning


	update connect


	update qs and remove all ~ semver crap


	fix: accept number as value of Signed Cookie






3.2.0 / 2013-04-15


	add “view” constructor setting to override view behaviour


	add req.acceptsEncoding(name)


	add req.acceptedEncodings


	revert cookie signature change causing session race conditions


	fix sorting of Accept values of the same quality






3.1.2 / 2013-04-12


	add support for custom Accept parameters


	update cookie-signature






3.1.1 / 2013-04-01


	add X-Forwarded-Host support to req.host


	fix relative redirects


	update mkdirp


	update buffer-crc32


	remove legacy app.configure() method from app template.






3.1.0 / 2013-01-25


	add support for leading “.” in “view engine” setting


	add array support to res.set()


	add node 0.8.x to travis.yml


	add “subdomain offset” setting for tweaking req.subdomains


	add res.location(url) implementing res.redirect()-like setting of Location


	use app.get() for x-powered-by setting for inheritance


	fix colons in passwords for req.auth






3.0.6 / 2013-01-04


	add http verb methods to Router


	update connect


	fix mangling of the res.cookie() options object


	fix jsonp whitespace escape. Closes #1132






3.0.5 / 2012-12-19


	add throwing when a non-function is passed to a route


	fix: explicitly remove Transfer-Encoding header from 204 and 304 responses


	revert “add ‘etag’ option”






3.0.4 / 2012-12-05


	add ‘etag’ option to disable res.send() Etags


	add escaping of urls in text/plain in res.redirect()
for old browsers interpreting as html


	change crc32 module for a more liberal license


	update connect






3.0.3 / 2012-11-13


	update connect


	update cookie module


	fix cookie max-age






3.0.2 / 2012-11-08


	add OPTIONS to cors example. Closes #1398


	fix route chaining regression. Closes #1397






3.0.1 / 2012-11-01


	update connect






3.0.0 / 2012-10-23


	add make clean


	add “Basic” check to req.auth


	add req.auth test coverage


	add cb && cb(payload) to res.jsonp(). Closes #1374


	add backwards compat for res.redirect() status. Closes #1336


	add support for res.json() to retain previously defined Content-Types. Closes #1349


	update connect


	change res.redirect() to utilize a pathname-relative Location again. Closes #1382


	remove non-primitive string support for res.send()


	fix view-locals example. Closes #1370


	fix route-separation example






3.0.0rc5 / 2012-09-18


	update connect


	add redis search example


	add static-files example


	add “x-powered-by” setting (app.disable('x-powered-by'))


	add “application/octet-stream” redirect Accept test case. Closes #1317






3.0.0rc4 / 2012-08-30


	add res.jsonp(). Closes #1307


	add “verbose errors” option to error-pages example


	add another route example to express(1) so people are not so confused


	add redis online user activity tracking example


	update connect dep


	fix etag quoting. Closes #1310


	fix error-pages 404 status


	fix jsonp callback char restrictions


	remove old OPTIONS default response






3.0.0rc3 / 2012-08-13


	update connect dep


	fix signed cookies to work with connect.cookieParser() (”s:” prefix was missing) [tnydwrds]


	fix res.render() clobbering of “locals”






3.0.0rc2 / 2012-08-03


	add CORS example


	update connect dep


	deprecate .createServer() & remove old stale examples


	fix: escape res.redirect() link


	fix vhost example






3.0.0rc1 / 2012-07-24


	add more examples to view-locals


	add scheme-relative redirects (res.redirect("//foo.com")) support


	update cookie dep


	update connect dep


	update send dep


	fix express(1) -h flag, use -H for hogan. Closes #1245


	fix res.sendfile() socket error handling regression






3.0.0beta7 / 2012-07-16


	update connect dep for send() root normalization regression






3.0.0beta6 / 2012-07-13


	add err.view property for view errors. Closes #1226


	add “jsonp callback name” setting


	add support for “/foo/:bar*” non-greedy matches


	change res.sendfile() to use send() module


	change res.send to use “response-send” module


	remove app.locals.use and res.locals.use, use regular middleware






3.0.0beta5 / 2012-07-03


	add “make check” support


	add route-map example


	add res.json(obj, status) support back for BC


	add “methods” dep, remove internal methods module


	update connect dep


	update auth example to utilize cores pbkdf2


	updated tests to use “supertest”






3.0.0beta4 / 2012-06-25


	Added req.auth


	Added req.range(size)


	Added res.links(obj)


	Added res.send(body, status) support back for backwards compat


	Added .default() support to res.format()


	Added 2xx / 304 check to req.fresh


	Revert “Added + support to the router”


	Fixed res.send() freshness check, respect res.statusCode






3.0.0beta3 / 2012-06-15


	Added hogan --hjs to express(1) [nullfirm]


	Added another example to content-negotiation


	Added fresh dep


	Changed: res.send() always checks freshness


	Fixed: expose connects mime module. Closes #1165






3.0.0beta2 / 2012-06-06


	Added + support to the router


	Added req.host


	Changed req.param() to check route first


	Update connect dep






3.0.0beta1 / 2012-06-01


	Added res.format() callback to override default 406 behaviour


	Fixed res.redirect() 406. Closes #1154






3.0.0alpha5 / 2012-05-30


	Added req.ip


	Added { signed: true } option to res.cookie()


	Removed res.signedCookie()


	Changed: dont reverse req.ips


	Fixed “trust proxy” setting check for req.ips






3.0.0alpha4 / 2012-05-09


	Added: allow [] in jsonp callback. Closes #1128


	Added PORT env var support in generated template. Closes #1118 [benatkin]


	Updated: connect 2.2.2






3.0.0alpha3 / 2012-05-04


	Added public app.routes. Closes #887


	Added view-locals example


	Added mvc example


	Added res.locals.use(). Closes #1120


	Added conditional-GET support to res.send()


	Added: coerce res.set() values to strings


	Changed: moved static() in generated apps below router


	Changed: res.send() only set ETag when not previously set


	Changed connect 2.2.1 dep


	Changed: make test now runs unit / acceptance tests


	Fixed req/res proto inheritance






3.0.0alpha2 / 2012-04-26


	Added make benchmark back


	Added res.send() support for String objects


	Added client-side data exposing example


	Added res.header() and req.header() aliases for BC


	Added express.createServer() for BC


	Perf: memoize parsed urls


	Perf: connect 2.2.0 dep


	Changed: make expressInit() middleware self-aware


	Fixed: use app.get() for all core settings


	Fixed redis session example


	Fixed session example. Closes #1105


	Fixed generated express dep. Closes #1078






3.0.0alpha1 / 2012-04-15


	Added app.locals.use(callback)


	Added app.locals object


	Added app.locals(obj)


	Added res.locals object


	Added res.locals(obj)


	Added res.format() for content-negotiation


	Added app.engine()


	Added res.cookie() JSON cookie support


	Added “trust proxy” setting


	Added req.subdomains


	Added req.protocol


	Added req.secure


	Added req.path


	Added req.ips


	Added req.fresh


	Added req.stale


	Added comma-delimited / array support for req.accepts()


	Added debug instrumentation


	Added res.set(obj)


	Added res.set(field, value)


	Added res.get(field)


	Added app.get(setting). Closes #842


	Added req.acceptsLanguage()


	Added req.acceptsCharset()


	Added req.accepted


	Added req.acceptedLanguages


	Added req.acceptedCharsets


	Added “json replacer” setting


	Added “json spaces” setting


	Added X-Forwarded-Proto support to res.redirect(). Closes #92


	Added --less support to express(1)


	Added express.response prototype


	Added express.request prototype


	Added express.application prototype


	Added app.path()


	Added app.render()


	Added res.type() to replace res.contentType()


	Changed: res.redirect() to add relative support


	Changed: enable “jsonp callback” by default


	Changed: renamed “case sensitive routes” to “case sensitive routing”


	Rewrite of all tests with mocha


	Removed “root” setting


	Removed res.redirect('home') support


	Removed req.notify()


	Removed app.register()


	Removed app.redirect()


	Removed app.is()


	Removed app.helpers()


	Removed app.dynamicHelpers()


	Fixed res.sendfile() with non-GET. Closes #723


	Fixed express(1) public dir for windows. Closes #866






2.5.9/ 2012-04-02


	Added support for PURGE request method [pbuyle]


	Fixed express(1) generated app app.address() before listening [mmalecki]






2.5.8 / 2012-02-08


	Update mkdirp dep. Closes #991






2.5.7 / 2012-02-06


	Fixed app.all duplicate DELETE requests [mscdex]






2.5.6 / 2012-01-13


	Updated hamljs dev dep. Closes #953






2.5.5 / 2012-01-08


	Fixed: set filename on cached templates [matthewleon]






2.5.4 / 2012-01-02


	Fixed express(1) eol on 0.4.x. Closes #947






2.5.3 / 2011-12-30


	Fixed req.is() when a charset is present






2.5.2 / 2011-12-10


	Fixed: express(1) LF -> CRLF for windows






2.5.1 / 2011-11-17


	Changed: updated connect to 1.8.x


	Removed sass.js support from express(1)






2.5.0 / 2011-10-24


	Added ./routes dir for generated app by default


	Added npm install reminder to express(1) app gen


	Added 0.5.x support


	Removed make test-cov since it wont work with node 0.5.x


	Fixed express(1) public dir for windows. Closes #866






2.4.7 / 2011-10-05


	Added mkdirp to express(1). Closes #795


	Added simple json-config example


	Added  shorthand for the parsed request’s pathname via req.path


	Changed connect dep to 1.7.x to fix npm issue…


	Fixed res.redirect() HEAD support. [reported by xerox]


	Fixed req.flash(), only escape args


	Fixed absolute path checking on windows. Closes #829 [reported by andrewpmckenzie]






2.4.6 / 2011-08-22


	Fixed multiple param callback regression. Closes #824 [reported by TroyGoode]






2.4.5 / 2011-08-19


	Added support for routes to handle errors. Closes #809


	Added app.routes.all(). Closes #803


	Added “basepath” setting to work in conjunction with reverse proxies etc.


	Refactored Route to use a single array of callbacks


	Added support for multiple callbacks for app.param(). Closes #801
Closes #805


	Changed: removed .call(self) for route callbacks


	Dependency: qs >= 0.3.1


	Fixed res.redirect() on windows due to join() usage. Closes #808






2.4.4 / 2011-08-05


	Fixed res.header() intention of a set, even when undefined


	Fixed *, value no longer required


	Fixed res.send(204) support. Closes #771






2.4.3 / 2011-07-14


	Added docs for status option special-case. Closes #739


	Fixed options.filename, exposing the view path to template engines






2.4.2. / 2011-07-06


	Revert “removed jsonp stripping” for XSS






2.4.1 / 2011-07-06


	Added res.json() JSONP support. Closes #737


	Added extending-templates example. Closes #730


	Added “strict routing” setting for trailing slashes


	Added support for multiple envs in app.configure() calls. Closes #735


	Changed: res.send() using res.json()


	Changed: when cookie path === null don’t default it


	Changed; default cookie path to “home” setting. Closes #731


	Removed pids/logs creation from express(1)






2.4.0 / 2011-06-28


	Added chainable res.status(code)


	Added res.json(), an explicit version of res.send(obj)


	Added simple web-service example






2.3.12 / 2011-06-22


	#express is now on freenode! come join!


	Added req.get(field, param)


	Added links to Japanese documentation, thanks @hideyukisaito!


	Added; the express(1) generated app outputs the env


	Added content-negotiation example


	Dependency: connect >= 1.5.1 < 2.0.0


	Fixed view layout bug. Closes #720


	Fixed; ignore body on 304. Closes #701






2.3.11 / 2011-06-04


	Added npm test


	Removed generation of dummy test file from express(1)


	Fixed; express(1) adds express as a dep


	Fixed; prune on prepublish






2.3.10 / 2011-05-27


	Added req.route, exposing the current route


	Added package.json generation support to express(1)


	Fixed call to app.param() function for optional params. Closes #682






2.3.9 / 2011-05-25


	Fixed bug-ish with ../' in res.partial()` calls






2.3.8 / 2011-05-24


	Fixed app.options()






2.3.7 / 2011-05-23


	Added route Collection, ex: app.get('/user/:id').remove();


	Added support for app.param(fn) to define param logic


	Removed app.param() support for callback with return value


	Removed module.parent check from express(1) generated app. Closes #670


	Refactored router. Closes #639






2.3.6 / 2011-05-20


	Changed; using devDependencies instead of git submodules


	Fixed redis session example


	Fixed markdown example


	Fixed view caching, should not be enabled in development






2.3.5 / 2011-05-20


	Added export .view as alias for .View






2.3.4 / 2011-05-08


	Added ./examples/say


	Fixed res.sendfile() bug preventing the transfer of files with spaces






2.3.3 / 2011-05-03


	Added “case sensitive routes” option.


	Changed; split methods supported per rfc [slaskis]


	Fixed route-specific middleware when using the same callback function several times






2.3.2 / 2011-04-27


	Fixed view hints






2.3.1 / 2011-04-26


	Added app.match() as app.match.all()


	Added app.lookup() as app.lookup.all()


	Added app.remove() for app.remove.all()


	Added app.remove.VERB()


	Fixed template caching collision issue. Closes #644


	Moved router over from connect and started refactor






2.3.0 / 2011-04-25


	Added options support to res.clearCookie()


	Added res.helpers() as alias of res.locals()


	Added; json defaults to UTF-8 with res.send(). Closes #632. [Daniel   * Dependency connect >= 1.4.0


	Changed; auto set Content-Type in res.attachement [Aaron Heckmann]


	Renamed “cache views” to “view cache”. Closes #628


	Fixed caching of views when using several apps. Closes #637


	Fixed gotcha invoking app.param() callbacks once per route middleware.
Closes #638


	Fixed partial lookup precedence. Closes #631
Shaw]






2.2.2 / 2011-04-12


	Added second callback support for res.download() connection errors


	Fixed filename option passing to template engine






2.2.1 / 2011-04-04


	Added layout(path) helper to change the layout within a view. Closes #610


	Fixed partial() collection object support.
Previously only anything with .length would work.
When .length is present one must still be aware of holes,
however now { collection: {foo: 'bar'}} is valid, exposes
keyInCollection and keysInCollection.


	Performance improved with better view caching


	Removed request and response locals


	Changed; errorHandler page title is now Express instead of Connect






2.2.0 / 2011-03-30


	Added app.lookup.VERB(), ex app.lookup.put('/user/:id'). Closes #606


	Added app.match.VERB(), ex app.match.put('/user/12'). Closes #606


	Added app.VERB(path) as alias of app.lookup.VERB().


	Dependency connect >= 1.2.0






2.1.1 / 2011-03-29


	Added; expose err.view object when failing to locate a view


	Fixed res.partial() call next(err) when no callback is given [reported by aheckmann]


	Fixed; res.send(undefined) responds with 204 [aheckmann]






2.1.0 / 2011-03-24


	Added <root>/_?<name> partial lookup support. Closes #447


	Added request, response, and app local variables


	Added settings local variable, containing the app’s settings


	Added req.flash() exception if req.session is not available


	Added res.send(bool) support (json response)


	Fixed stylus example for latest version


	Fixed; wrap try/catch around res.render()






2.0.0 / 2011-03-17


	Fixed up index view path alternative.


	Changed; res.locals() without object returns the locals






2.0.0rc3 / 2011-03-17


	Added res.locals(obj) to compliment res.local(key, val)


	Added res.partial() callback support


	Fixed recursive error reporting issue in res.render()






2.0.0rc2 / 2011-03-17


	Changed; partial() “locals” are now optional


	Fixed SlowBuffer support. Closes #584 [reported by tyrda01]


	Fixed .filename view engine option [reported by drudge]


	Fixed blog example


	Fixed {req,res}.app reference when mounting [Ben Weaver]






2.0.0rc / 2011-03-14


	Fixed; expose HTTPSServer constructor


	Fixed express(1) default test charset. Closes #579 [reported by secoif]


	Fixed; default charset to utf-8 instead of utf8 for lame IE [reported by NickP]






2.0.0beta3 / 2011-03-09


	Added support for res.contentType() literal
The original res.contentType('.json'),
res.contentType('application/json'), and res.contentType('json')
will work now.


	Added res.render() status option support back


	Added charset option for res.render()


	Added .charset support (via connect 1.0.4)


	Added view resolution hints when in development and a lookup fails


	Added layout lookup support relative to the page view.
For example while rendering ./views/user/index.jade if you create
./views/user/layout.jade it will be used in favour of the root layout.


	Fixed res.redirect(). RFC states absolute url [reported by unlink]


	Fixed; default res.send() string charset to utf8


	Removed Partial constructor (not currently used)






2.0.0beta2 / 2011-03-07


	Added res.render() .locals support back to aid in migration process


	Fixed flash example






2.0.0beta / 2011-03-03


	Added HTTPS support


	Added res.cookie() maxAge support


	Added req.header() Referrer / Referer special-case, either works


	Added mount support for res.redirect(), now respects the mount-point


	Added union() util, taking place of merge(clone()) combo


	Added stylus support to express(1) generated app


	Added secret to session middleware used in examples and generated app


	Added res.local(name, val) for progressive view locals


	Added default param support to req.param(name, default)


	Added app.disabled() and app.enabled()


	Added app.register() support for omitting leading “.”, either works


	Added res.partial(), using the same interface as partial() within a view. Closes #539


	Added app.param() to map route params to async/sync logic


	Added; aliased app.helpers() as app.locals(). Closes #481


	Added extname with no leading “.” support to res.contentType()


	Added cache views setting, defaulting to enabled in “production” env


	Added index file partial resolution, eg: partial(’user’) may try views/user/index.jade.


	Added req.accepts() support for extensions


	Changed; res.download() and res.sendfile() now utilize Connect’s
static file server connect.static.send().


	Changed; replaced connect.utils.mime() with npm mime module


	Changed; allow req.query to be pre-defined (via middleware or other parent


	Changed view partial resolution, now relative to parent view


	Changed view engine signature. no longer engine.render(str, options, callback), now engine.compile(str, options) -> Function, the returned function accepts fn(locals).


	Fixed req.param() bug returning Array.prototype methods. Closes #552


	Fixed; using Stream#pipe() instead of sys.pump() in res.sendfile()


	Fixed; using qs module instead of querystring


	Fixed; strip unsafe chars from jsonp callbacks


	Removed “stream threshold” setting






1.0.8 / 2011-03-01


	Allow req.query to be pre-defined (via middleware or other parent app)


	“connect”: “>= 0.5.0 < 1.0.0”. Closes #547


	Removed the long deprecated EXPRESS_ENV support






1.0.7 / 2011-02-07


	Fixed render() setting inheritance.
Mounted apps would not inherit “view engine”






1.0.6 / 2011-02-07


	Fixed view engine setting bug when period is in dirname






1.0.5 / 2011-02-05


	Added secret to generated app session() call






1.0.4 / 2011-02-05


	Added qs dependency to package.json


	Fixed namespaced require()s for latest connect support






1.0.3 / 2011-01-13


	Remove unsafe characters from JSONP callback names [Ryan Grove]






1.0.2 / 2011-01-10


	Removed nested require, using connect.router






1.0.1 / 2010-12-29


	Fixed for middleware stacked via createServer()
previously the foo middleware passed to createServer(foo)
would not have access to Express methods such as res.send()
or props like req.query etc.






1.0.0 / 2010-11-16


	Added; deduce partial object names from the last segment.
For example by default partial('forum/post', postObject) will
give you the post object, providing a meaningful default.


	Added http status code string representation to res.redirect() body


	Added; res.redirect() supporting text/plain and text/html via Accept.


	Added req.is() to aid in content negotiation


	Added partial local inheritance [suggested by masylum]. Closes #102
providing access to parent template locals.


	Added -s, –session[s] flag to express(1) to add session related middleware


	Added –template flag to express(1) to specify the
template engine to use.


	Added –css flag to express(1) to specify the
stylesheet engine to use (or just plain css by default).


	Added app.all() support [thanks aheckmann]


	Added partial direct object support.
You may now partial('user', user) providing the “user” local,
vs previously partial('user', { object: user }).


	Added route-separation example since many people question ways
to do this with CommonJS modules. Also view the blog example for
an alternative.


	Performance; caching view path derived partial object names


	Fixed partial local inheritance precedence. [reported by Nick Poulden] Closes #454


	Fixed jsonp support; text/javascript as per mailinglist discussion






1.0.0rc4 / 2010-10-14


	Added NODE_ENV support, EXPRESS_ENV is deprecated and will be removed in 1.0.0


	Added route-middleware support (very helpful, see the docs [http://expressjs.com/guide.html#Route-Middleware])


	Added jsonp callback setting to enable/disable jsonp autowrapping [Dav Glass]


	Added callback query check on response.send to autowrap JSON objects for simple webservice implementations [Dav Glass]


	Added partial() support for array-like collections. Closes #434


	Added support for swappable querystring parsers


	Added session usage docs. Closes #443


	Added dynamic helper caching. Closes #439 [suggested by maritz]


	Added authentication example


	Added basic Range support to res.sendfile() (and res.download() etc)


	Changed; express(1) generated app using 2 spaces instead of 4


	Default env to “development” again [aheckmann]


	Removed context option is no more, use “scope”


	Fixed; exposing ./support libs to examples so they can run without installs


	Fixed mvc example






1.0.0rc3 / 2010-09-20


	Added confirmation for express(1) app generation. Closes #391


	Added extending of flash formatters via app.flashFormatters


	Added flash formatter support. Closes #411


	Added streaming support to res.sendfile() using sys.pump() when >= “stream threshold”


	Added stream threshold setting for res.sendfile()


	Added res.send() HEAD support


	Added res.clearCookie()


	Added res.cookie()


	Added res.render() headers option


	Added res.redirect() response bodies


	Added res.render() status option support. Closes #425 [thanks aheckmann]


	Fixed res.sendfile() responding with 403 on malicious path


	Fixed res.download() bug; when an error occurs remove Content-Disposition


	Fixed; mounted apps settings now inherit from parent app [aheckmann]


	Fixed; stripping Content-Length / Content-Type when 204


	Fixed res.send() 204. Closes #419


	Fixed multiple Set-Cookie headers via res.header(). Closes #402


	Fixed bug messing with error handlers when listenFD() is called instead of listen(). [thanks guillermo]






1.0.0rc2 / 2010-08-17


	Added app.register() for template engine mapping. Closes #390


	Added res.render() callback support as second argument (no options)


	Added callback support to res.download()


	Added callback support for res.sendfile()


	Added support for middleware access via express.middlewareName() vs connect.middlewareName()


	Added “partials” setting to docs


	Added default expresso tests to express(1) generated app. Closes #384


	Fixed res.sendfile() error handling, defer via next()


	Fixed res.render() callback when a layout is used [thanks guillermo]


	Fixed; make install creating ~/.node_libraries when not present


	Fixed issue preventing error handlers from being defined anywhere. Closes #387






1.0.0rc / 2010-07-28


	Added mounted hook. Closes #369


	Added connect dependency to package.json


	Removed “reload views” setting and support code
development env never caches, production always caches.


	Removed param in route callbacks, signature is now
simply (req, res, next), previously (req, res, params, next).
Use req.params for path captures, req.query for GET params.


	Fixed “home” setting


	Fixed middleware/router precedence issue. Closes #366


	Fixed; configure() callbacks called immediately. Closes #368






1.0.0beta2 / 2010-07-23


	Added more examples


	Added; exporting Server constructor


	Added Server#helpers() for view locals


	Added Server#dynamicHelpers() for dynamic view locals. Closes #349


	Added support for absolute view paths


	Added; home setting defaults to Server#route for mounted apps. Closes #363


	Added Guillermo Rauch to the contributor list


	Added support for “as” for non-collection partials. Closes #341


	Fixed install.sh, ensuring ~/.node_libraries exists. Closes #362 [thanks jf]


	Fixed res.render() exceptions, now passed to next() when no callback is given [thanks guillermo]


	Fixed instanceof Array checks, now Array.isArray()


	Fixed express(1) expansion of public dirs. Closes #348


	Fixed middleware precedence. Closes #345


	Fixed view watcher, now async [thanks aheckmann]






1.0.0beta / 2010-07-15


	Re-write


	much faster


	much lighter


	Check ExpressJS.com [http://expressjs.com] for migration guide and updated docs










0.14.0 / 2010-06-15


	Utilize relative requires


	Added Static bufferSize option [aheckmann]


	Fixed caching of view and partial subdirectories [aheckmann]


	Fixed mime.type() comments now that “.ext” is not supported


	Updated haml submodule


	Updated class submodule


	Removed bin/express






0.13.0 / 2010-06-01


	Added node v0.1.97 compatibility


	Added support for deleting cookies via Request#cookie(’key’, null)


	Updated haml submodule


	Fixed not-found page, now using using charset utf-8


	Fixed show-exceptions page, now using using charset utf-8


	Fixed view support due to fs.readFile Buffers


	Changed; mime.type() no longer accepts “.type” due to node extname() changes






0.12.0 / 2010-05-22


	Added node v0.1.96 compatibility


	Added view helpers export which act as additional local variables


	Updated haml submodule


	Changed ETag; removed inode, modified time only


	Fixed LF to CRLF for setting multiple cookies


	Fixed cookie complation; values are now urlencoded


	Fixed cookies parsing; accepts quoted values and url escaped cookies






0.11.0 / 2010-05-06


	Added support for layouts using different engines


	this.render(’page.html.haml’, { layout: ‘super-cool-layout.html.ejs’ })


	this.render(’page.html.haml’, { layout: ‘foo’ }) // assumes ‘foo.html.haml’


	this.render(’page.html.haml’, { layout: false }) // no layout






	Updated ext submodule


	Updated haml submodule


	Fixed EJS partial support by passing along the context. Issue #307






0.10.1 / 2010-05-03


	Fixed binary uploads.






0.10.0 / 2010-04-30


	Added charset support via Request#charset (automatically assigned to ‘UTF-8’ when respond()’s
encoding is set to ‘utf8’ or ‘utf-8’.


	Added “encoding” option to Request#render(). Closes #299


	Added “dump exceptions” setting, which is enabled by default.


	Added simple ejs template engine support


	Added error response support for text/plain, application/json. Closes #297


	Added callback function param to Request#error()


	Added Request#sendHead()


	Added Request#stream()


	Added support for Request#respond(304, null) for empty response bodies


	Added ETag support to Request#sendfile()


	Added options to Request#sendfile(), passed to fs.createReadStream()


	Added filename arg to Request#download()


	Performance enhanced due to pre-reversing plugins so that plugins.reverse() is not called on each request


	Performance enhanced by preventing several calls to toLowerCase() in Router#match()


	Changed; Request#sendfile() now streams


	Changed; Renamed Request#halt() to Request#respond(). Closes #289


	Changed; Using sys.inspect() instead of JSON.encode() for error output


	Changed; run() returns the http.Server instance. Closes #298


	Changed; Defaulting Server#host to null (INADDR_ANY)


	Changed; Logger “common” format scale of 0.4f


	Removed Logger “request” format


	Fixed; Catching ENOENT in view caching, preventing error when “views/partials” is not found


	Fixed several issues with http client


	Fixed Logger Content-Length output


	Fixed bug preventing Opera from retaining the generated session id. Closes #292






0.9.0 / 2010-04-14


	Added DSL level error() route support


	Added DSL level notFound() route support


	Added Request#error()


	Added Request#notFound()


	Added Request#render() callback function. Closes #258


	Added “max upload size” setting


	Added “magic” variables to collection partials (__index__, __length__, __isFirst__, __isLast__). Closes #254


	Added haml.js [http://github.com/visionmedia/haml.js] submodule; removed haml-js


	Added callback function support to Request#halt() as 3rd/4th arg


	Added preprocessing of route param wildcards using param(). Closes #251


	Added view partial support (with collections etc)


	Fixed bug preventing falsey params (such as ?page=0). Closes #286


	Fixed setting of multiple cookies. Closes #199


	Changed; view naming convention is now NAME.TYPE.ENGINE (for example page.html.haml)


	Changed; session cookie is now httpOnly


	Changed; Request is no longer global


	Changed; Event is no longer global


	Changed; “sys” module is no longer global


	Changed; moved Request#download to Static plugin where it belongs


	Changed; Request instance created before body parsing. Closes #262


	Changed; Pre-caching views in memory when “cache view contents” is enabled. Closes #253


	Changed; Pre-caching view partials in memory when “cache view partials” is enabled


	Updated support to node –version 0.1.90


	Updated dependencies


	Removed set(”session cookie”) in favour of use(Session, { cookie: { … }})


	Removed utils.mixin(); use Object#mergeDeep()






0.8.0 / 2010-03-19


	Added coffeescript example app. Closes #242


	Changed; cache api now async friendly. Closes #240


	Removed deprecated ‘express/static’ support. Use ‘express/plugins/static’






0.7.6 / 2010-03-19


	Added Request#isXHR. Closes #229


	Added make install (for the executable)


	Added express executable for setting up simple app templates


	Added “GET /public/*” to Static plugin, defaulting to /public
  
    

    Installation
    

    
 
  

    
      
          
            
  [image: ../../_images/zfY6lL7eFa-3000x3000.png]Express Logo [http://expressjs.com/]

Fast, unopinionated, minimalist web framework for node [http://nodejs.org].

[image: ../../_images/express.svg]NPM Version [https://npmjs.org/package/express]
[image: ../../_images/express1.svg]NPM Downloads [https://npmjs.org/package/express]
[image: ../../_images/master28.svg]Linux Build [https://travis-ci.org/expressjs/express]
[image: ../../_images/master29.svg]Windows Build [https://ci.appveyor.com/project/dougwilson/express]
[image: ../../_images/master30.svg]Test Coverage [https://coveralls.io/r/expressjs/express?branch=master]

var express = require('express')
var app = express()

app.get('/', function (req, res) {
  res.send('Hello World')
})

app.listen(3000)






Installation

This is a Node.js [https://nodejs.org/en/] module available through the
npm registry [https://www.npmjs.com/].

Before installing, download and install Node.js [https://nodejs.org/en/download/].
Node.js 0.10 or higher is required.

Installation is done using the
npm install command [https://docs.npmjs.com/getting-started/installing-npm-packages-locally]:

$ npm install express





Follow our installing guide [http://expressjs.com/en/starter/installing.html]
for more information.



Features


	Robust routing


	Focus on high performance


	Super-high test coverage


	HTTP helpers (redirection, caching, etc)


	View system supporting 14+ template engines


	Content negotiation


	Executable for generating applications quickly






Docs & Community


	Website and Documentation [http://expressjs.com/] - [website repo [https://github.com/expressjs/expressjs.com]]


	#express [https://webchat.freenode.net/?channels=express] on freenode IRC


	GitHub Organization [https://github.com/expressjs] for Official Middleware & Modules


	Visit the Wiki [https://github.com/expressjs/express/wiki]


	Google Group [https://groups.google.com/group/express-js] for discussion


	Gitter [https://gitter.im/expressjs/express] for support and discussion




PROTIP Be sure to read Migrating from 3.x to 4.x [https://github.com/expressjs/express/wiki/Migrating-from-3.x-to-4.x] as well as New features in 4.x [https://github.com/expressjs/express/wiki/New-features-in-4.x].


Security Issues

If you discover a security vulnerability in Express, please see Security Policies and Procedures.




Quick Start

The quickest way to get started with express is to utilize the executable express(1) [https://github.com/expressjs/generator] to generate an application as shown below:

Install the executable. The executable’s major version will match Express’s:

$ npm install -g express-generator@4





Create the app:

$ express /tmp/foo && cd /tmp/foo





Install dependencies:

$ npm install





Start the server:

$ npm start







Philosophy

The Express philosophy is to provide small, robust tooling for HTTP servers, making
it a great solution for single page applications, web sites, hybrids, or public
HTTP APIs.

Express does not force you to use any specific ORM or template engine. With support for over
14 template engines via Consolidate.js [https://github.com/tj/consolidate.js],
you can quickly craft your perfect framework.



Examples

To view the examples, clone the Express repo and install the dependencies:

$ git clone git://github.com/expressjs/express.git --depth 1
$ cd express
$ npm install





Then run whichever example you want:

$ node examples/content-negotiation







Tests

To run the test suite, first install the dependencies, then run npm test:

$ npm install
$ npm test







People

The original author of Express is TJ Holowaychuk [https://github.com/tj]

The current lead maintainer is Douglas Christopher Wilson [https://github.com/dougwilson]

List of all contributors [https://github.com/expressjs/express/graphs/contributors]



License

MIT




          

      

      

    

  

  
    

    1.18.3 / 2018-05-14
    

    
 
  

    
      
          
            
  
1.18.3 / 2018-05-14


	Fix stack trace for strict json parse error


	deps: depd@~1.1.2


	perf: remove argument reassignment






	deps: http-errors@~1.6.3


	deps: depd@~1.1.2


	deps: setprototypeof@1.1.0


	deps: statuses@’>= 1.3.1 < 2’






	deps: iconv-lite@0.4.23


	Fix loading encoding with year appended


	Fix deprecation warnings on Node.js 10+






	deps: qs@6.5.2


	deps: raw-body@2.3.3


	deps: http-errors@1.6.3


	deps: iconv-lite@0.4.23






	deps: type-is@~1.6.16


	deps: mime-types@~2.1.18










1.18.2 / 2017-09-22


	deps: debug@2.6.9


	perf: remove argument reassignment






1.18.1 / 2017-09-12


	deps: content-type@~1.0.4


	perf: remove argument reassignment


	perf: skip parameter parsing when no parameters






	deps: iconv-lite@0.4.19


	Fix ISO-8859-1 regression


	Update Windows-1255






	deps: qs@6.5.1


	Fix parsing & compacting very deep objects






	deps: raw-body@2.3.2


	deps: iconv-lite@0.4.19










1.18.0 / 2017-09-08


	Fix JSON strict violation error to match native parse error


	Include the body property on verify errors


	Include the type property on all generated errors


	Use http-errors to set status code on errors


	deps: bytes@3.0.0


	deps: debug@2.6.8


	deps: depd@~1.1.1


	Remove unnecessary Buffer loading






	deps: http-errors@~1.6.2


	deps: depd@1.1.1






	deps: iconv-lite@0.4.18


	Add support for React Native


	Add a warning if not loaded as utf-8


	Fix CESU-8 decoding in Node.js 8


	Improve speed of ISO-8859-1 encoding






	deps: qs@6.5.0


	deps: raw-body@2.3.1


	Use http-errors for standard emitted errors


	deps: bytes@3.0.0


	deps: iconv-lite@0.4.18


	perf: skip buffer decoding on overage chunk






	perf: prevent internal throw when missing charset






1.17.2 / 2017-05-17


	deps: debug@2.6.7


	Fix DEBUG_MAX_ARRAY_LENGTH


	deps: ms@2.0.0






	deps: type-is@~1.6.15


	deps: mime-types@~2.1.15










1.17.1 / 2017-03-06


	deps: qs@6.4.0


	Fix regression parsing keys starting with [










1.17.0 / 2017-03-01


	deps: http-errors@~1.6.1


	Make message property enumerable for HttpErrors


	deps: setprototypeof@1.0.3






	deps: qs@6.3.1


	Fix compacting nested arrays










1.16.1 / 2017-02-10


	deps: debug@2.6.1


	Fix deprecation messages in WebStorm and other editors


	Undeprecate DEBUG_FD set to 1 or 2










1.16.0 / 2017-01-17


	deps: debug@2.6.0


	Allow colors in workers


	Deprecated DEBUG_FD environment variable


	Fix error when running under React Native


	Use same color for same namespace


	deps: ms@0.7.2






	deps: http-errors@~1.5.1


	deps: inherits@2.0.3


	deps: setprototypeof@1.0.2


	deps: statuses@’>= 1.3.1 < 2’






	deps: iconv-lite@0.4.15


	Added encoding MS-31J


	Added encoding MS-932


	Added encoding MS-936


	Added encoding MS-949


	Added encoding MS-950


	Fix GBK/GB18030 handling of Euro character






	deps: qs@6.2.1


	Fix array parsing from skipping empty values






	deps: raw-body@~2.2.0


	deps: iconv-lite@0.4.15






	deps: type-is@~1.6.14


	deps: mime-types@~2.1.13










1.15.2 / 2016-06-19


	deps: bytes@2.4.0


	deps: content-type@~1.0.2


	perf: enable strict mode






	deps: http-errors@~1.5.0


	Use setprototypeof module to replace __proto__ setting


	deps: statuses@’>= 1.3.0 < 2’


	perf: enable strict mode






	deps: qs@6.2.0


	deps: raw-body@~2.1.7


	deps: bytes@2.4.0


	perf: remove double-cleanup on happy path






	deps: type-is@~1.6.13


	deps: mime-types@~2.1.11










1.15.1 / 2016-05-05


	deps: bytes@2.3.0


	Drop partial bytes on all parsed units


	Fix parsing byte string that looks like hex






	deps: raw-body@~2.1.6


	deps: bytes@2.3.0






	deps: type-is@~1.6.12


	deps: mime-types@~2.1.10










1.15.0 / 2016-02-10


	deps: http-errors@~1.4.0


	Add HttpError export, for err instanceof createError.HttpError


	deps: inherits@2.0.1


	deps: statuses@’>= 1.2.1 < 2’






	deps: qs@6.1.0


	deps: type-is@~1.6.11


	deps: mime-types@~2.1.9










1.14.2 / 2015-12-16


	deps: bytes@2.2.0


	deps: iconv-lite@0.4.13


	deps: qs@5.2.0


	deps: raw-body@~2.1.5


	deps: bytes@2.2.0


	deps: iconv-lite@0.4.13






	deps: type-is@~1.6.10


	deps: mime-types@~2.1.8










1.14.1 / 2015-09-27


	Fix issue where invalid charset results in 400 when verify used


	deps: iconv-lite@0.4.12


	Fix CESU-8 decoding in Node.js 4.x






	deps: raw-body@~2.1.4


	Fix masking critical errors from iconv-lite


	deps: iconv-lite@0.4.12






	deps: type-is@~1.6.9


	deps: mime-types@~2.1.7










1.14.0 / 2015-09-16


	Fix JSON strict parse error to match syntax errors


	Provide static require analysis in urlencoded parser


	deps: depd@~1.1.0


	Support web browser loading






	deps: qs@5.1.0


	deps: raw-body@~2.1.3


	Fix sync callback when attaching data listener causes sync read






	deps: type-is@~1.6.8


	Fix type error when given invalid type to match against


	deps: mime-types@~2.1.6










1.13.3 / 2015-07-31


	deps: type-is@~1.6.6


	deps: mime-types@~2.1.4










1.13.2 / 2015-07-05


	deps: iconv-lite@0.4.11


	deps: qs@4.0.0


	Fix dropping parameters like hasOwnProperty


	Fix user-visible incompatibilities from 3.1.0


	Fix various parsing edge cases






	deps: raw-body@~2.1.2


	Fix error stack traces to skip makeError


	deps: iconv-lite@0.4.11






	deps: type-is@~1.6.4


	deps: mime-types@~2.1.2


	perf: enable strict mode


	perf: remove argument reassignment










1.13.1 / 2015-06-16


	deps: qs@2.4.2


	Downgraded from 3.1.0 because of user-visible incompatibilities










1.13.0 / 2015-06-14


	Add statusCode property on Errors, in addition to status


	Change type default to application/json for JSON parser


	Change type default to application/x-www-form-urlencoded for urlencoded parser


	Provide static require analysis


	Use the http-errors module to generate errors


	deps: bytes@2.1.0


	Slight optimizations






	deps: iconv-lite@0.4.10


	The encoding UTF-16 without BOM now defaults to UTF-16LE when detection fails


	Leading BOM is now removed when decoding






	deps: on-finished@~2.3.0


	Add defined behavior for HTTP CONNECT requests


	Add defined behavior for HTTP Upgrade requests


	deps: ee-first@1.1.1






	deps: qs@3.1.0


	Fix dropping parameters like hasOwnProperty


	Fix various parsing edge cases


	Parsed object now has null prototype






	deps: raw-body@~2.1.1


	Use unpipe module for unpiping requests


	deps: iconv-lite@0.4.10






	deps: type-is@~1.6.3


	deps: mime-types@~2.1.1


	perf: reduce try block size


	perf: remove bitwise operations






	perf: enable strict mode


	perf: remove argument reassignment


	perf: remove delete call






1.12.4 / 2015-05-10


	deps: debug@~2.2.0


	deps: qs@2.4.2


	Fix allowing parameters like constructor






	deps: on-finished@~2.2.1


	deps: raw-body@~2.0.1


	Fix a false-positive when unpiping in Node.js 0.8


	deps: bytes@2.0.1






	deps: type-is@~1.6.2


	deps: mime-types@~2.0.11










1.12.3 / 2015-04-15


	Slight efficiency improvement when not debugging


	deps: depd@~1.0.1


	deps: iconv-lite@0.4.8


	Add encoding alias UNICODE-1-1-UTF-7






	deps: raw-body@1.3.4


	Fix hanging callback if request aborts during read


	deps: iconv-lite@0.4.8










1.12.2 / 2015-03-16


	deps: qs@2.4.1


	Fix error when parameter hasOwnProperty is present










1.12.1 / 2015-03-15


	deps: debug@~2.1.3


	Fix high intensity foreground color for bold


	deps: ms@0.7.0






	deps: type-is@~1.6.1


	deps: mime-types@~2.0.10










1.12.0 / 2015-02-13


	add debug messages


	accept a function for the type option


	use content-type to parse Content-Type headers


	deps: iconv-lite@0.4.7


	Gracefully support enumerables on Object.prototype






	deps: raw-body@1.3.3


	deps: iconv-lite@0.4.7






	deps: type-is@~1.6.0


	fix argument reassignment


	fix false-positives in hasBody Transfer-Encoding check


	support wildcard for both type and subtype (*/*)


	deps: mime-types@~2.0.9










1.11.0 / 2015-01-30


	make internal extended: true depth limit infinity


	deps: type-is@~1.5.6


	deps: mime-types@~2.0.8










1.10.2 / 2015-01-20


	deps: iconv-lite@0.4.6


	Fix rare aliases of single-byte encodings






	deps: raw-body@1.3.2


	deps: iconv-lite@0.4.6










1.10.1 / 2015-01-01


	deps: on-finished@~2.2.0


	deps: type-is@~1.5.5


	deps: mime-types@~2.0.7










1.10.0 / 2014-12-02


	make internal extended: true array limit dynamic






1.9.3 / 2014-11-21


	deps: iconv-lite@0.4.5


	Fix Windows-31J and X-SJIS encoding support






	deps: qs@2.3.3


	Fix arrayLimit behavior






	deps: raw-body@1.3.1


	deps: iconv-lite@0.4.5






	deps: type-is@~1.5.3


	deps: mime-types@~2.0.3










1.9.2 / 2014-10-27


	deps: qs@2.3.2


	Fix parsing of mixed objects and values










1.9.1 / 2014-10-22


	deps: on-finished@~2.1.1


	Fix handling of pipelined requests






	deps: qs@2.3.0


	Fix parsing of mixed implicit and explicit arrays






	deps: type-is@~1.5.2


	deps: mime-types@~2.0.2










1.9.0 / 2014-09-24


	include the charset in “unsupported charset” error message


	include the encoding in “unsupported content encoding” error message


	deps: depd@~1.0.0






1.8.4 / 2014-09-23


	fix content encoding to be case-insensitive






1.8.3 / 2014-09-19


	deps: qs@2.2.4


	Fix issue with object keys starting with numbers truncated










1.8.2 / 2014-09-15


	deps: depd@0.4.5






1.8.1 / 2014-09-07


	deps: media-typer@0.3.0


	deps: type-is@~1.5.1






1.8.0 / 2014-09-05


	make empty-body-handling consistent between chunked requests


	empty json produces {}


	empty raw produces new Buffer(0)


	empty text produces ''


	empty urlencoded produces {}






	deps: qs@2.2.3


	Fix issue where first empty value in array is discarded






	deps: type-is@~1.5.0


	fix hasbody to be true for content-length: 0










1.7.0 / 2014-09-01


	add parameterLimit option to urlencoded parser


	change urlencoded extended array limit to 100


	respond with 413 when over parameterLimit in urlencoded






1.6.7 / 2014-08-29


	deps: qs@2.2.2


	Remove unnecessary cloning










1.6.6 / 2014-08-27


	deps: qs@2.2.0


	Array parsing fix


	Performance improvements










1.6.5 / 2014-08-16


	deps: on-finished@2.1.0






1.6.4 / 2014-08-14


	deps: qs@1.2.2






1.6.3 / 2014-08-10


	deps: qs@1.2.1






1.6.2 / 2014-08-07


	deps: qs@1.2.0


	Fix parsing array of objects










1.6.1 / 2014-08-06


	deps: qs@1.1.0


	Accept urlencoded square brackets


	Accept empty values in implicit array notation










1.6.0 / 2014-08-05


	deps: qs@1.0.2


	Complete rewrite


	Limits array length to 20


	Limits object depth to 5


	Limits parameters to 1,000










1.5.2 / 2014-07-27


	deps: depd@0.4.4


	Work-around v8 generating empty stack traces










1.5.1 / 2014-07-26


	deps: depd@0.4.3


	Fix exception when global Error.stackTraceLimit is too low










1.5.0 / 2014-07-20


	deps: depd@0.4.2


	Add TRACE_DEPRECATION environment variable


	Remove non-standard grey color from color output


	Support --no-deprecation argument


	Support --trace-deprecation argument






	deps: iconv-lite@0.4.4


	Added encoding UTF-7






	deps: raw-body@1.3.0


	deps: iconv-lite@0.4.4


	Added encoding UTF-7


	Fix Cannot switch to old mode now error on Node.js 0.10+






	deps: type-is@~1.3.2






1.4.3 / 2014-06-19


	deps: type-is@1.3.1


	fix global variable leak










1.4.2 / 2014-06-19


	deps: type-is@1.3.0


	improve type parsing










1.4.1 / 2014-06-19


	fix urlencoded extended deprecation message






1.4.0 / 2014-06-19


	add text parser


	add raw parser


	check accepted charset in content-type (accepts utf-8)


	check accepted encoding in content-encoding (accepts identity)


	deprecate bodyParser() middleware; use .json() and .urlencoded() as needed


	deprecate urlencoded() without provided extended option


	lazy-load urlencoded parsers


	parsers split into files for reduced mem usage


	support gzip and deflate bodies


	set inflate: false to turn off






	deps: raw-body@1.2.2


	Support all encodings from iconv-lite










1.3.1 / 2014-06-11


	deps: type-is@1.2.1


	Switch dependency from mime to mime-types@1.0.0










1.3.0 / 2014-05-31


	add extended option to urlencoded parser






1.2.2 / 2014-05-27


	deps: raw-body@1.1.6


	assert stream encoding on node.js 0.8


	assert stream encoding on node.js < 0.10.6


	deps: bytes@1










1.2.1 / 2014-05-26


	invoke next(err) after request fully read


	prevents hung responses and socket hang ups










1.2.0 / 2014-05-11


	add verify option


	deps: type-is@1.2.0


	support suffix matching










1.1.2 / 2014-05-11


	improve json parser speed






1.1.1 / 2014-05-11


	fix repeated limit parsing with every request






1.1.0 / 2014-05-10


	add type option


	deps: pin for safety and consistency






1.0.2 / 2014-04-14


	use type-is module






1.0.1 / 2014-03-20


	lower default limits to 100kb







          

      

      

    

  

  
    

    body-parser
    

    
 
  

    
      
          
            
  
body-parser

[image: ../../../../_images/body-parser.svg]NPM Version [https://npmjs.org/package/body-parser]
[image: ../../../../_images/body-parser1.svg]NPM Downloads [https://npmjs.org/package/body-parser]
[image: ../../../../_images/master5.svg]Build Status [https://travis-ci.org/expressjs/body-parser]
[image: ../../../../_images/master6.svg]Test Coverage [https://coveralls.io/r/expressjs/body-parser?branch=master]

Node.js body parsing middleware.

Parse incoming request bodies in a middleware before your handlers, available
under the req.body property.

Note As req.body’s shape is based on user-controlled input, all
properties and values in this object are untrusted and should be validated
before trusting. For example, req.body.foo.toString() may fail in multiple
ways, for example the foo property may not be there or may not be a string,
and toString may not be a function and instead a string or other user input.

Learn about the anatomy of an HTTP transaction in Node.js [https://nodejs.org/en/docs/guides/anatomy-of-an-http-transaction/].

This does not handle multipart bodies, due to their complex and typically
large nature. For multipart bodies, you may be interested in the following
modules:


	busboy [https://www.npmjs.org/package/busboy#readme] and
connect-busboy [https://www.npmjs.org/package/connect-busboy#readme]


	multiparty [https://www.npmjs.org/package/multiparty#readme] and
connect-multiparty [https://www.npmjs.org/package/connect-multiparty#readme]


	formidable [https://www.npmjs.org/package/formidable#readme]


	multer [https://www.npmjs.org/package/multer#readme]




This module provides the following parsers:


	JSON body parser


	Raw body parser


	Text body parser


	URL-encoded form body parser




Other body parsers you might be interested in:


	body [https://www.npmjs.org/package/body#readme]


	co-body [https://www.npmjs.org/package/co-body#readme]





Installation

$ npm install body-parser







API

var bodyParser = require('body-parser')





The bodyParser object exposes various factories to create middlewares. All
middlewares will populate the req.body property with the parsed body when
the Content-Type request header matches the type option, or an empty
object ({}) if there was no body to parse, the Content-Type was not matched,
or an error occurred.

The various errors returned by this module are described in the
errors section.


bodyParser.json([options])

Returns middleware that only parses json and only looks at requests where
the Content-Type header matches the type option. This parser accepts any
Unicode encoding of the body and supports automatic inflation of gzip and
deflate encodings.

A new body object containing the parsed data is populated on the request
object after the middleware (i.e. req.body).


Options

The json function takes an optional options object that may contain any of
the following keys:


inflate

When set to true, then deflated (compressed) bodies will be inflated; when
false, deflated bodies are rejected. Defaults to true.



limit

Controls the maximum request body size. If this is a number, then the value
specifies the number of bytes; if it is a string, the value is passed to the
bytes [https://www.npmjs.com/package/bytes] library for parsing. Defaults
to '100kb'.



reviver

The reviver option is passed directly to JSON.parse as the second
argument. You can find more information on this argument
in the MDN documentation about JSON.parse [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON/parse#Example.3A_Using_the_reviver_parameter].



strict

When set to true, will only accept arrays and objects; when false will
accept anything JSON.parse accepts. Defaults to true.



type

The type option is used to determine what media type the middleware will
parse. This option can be a string, array of strings, or a function. If not a
function, type option is passed directly to the
type-is [https://www.npmjs.org/package/type-is#readme] library and this can
be an extension name (like json), a mime type (like application/json), or
a mime type with a wildcard (like */* or */json). If a function, the type
option is called as fn(req) and the request is parsed if it returns a truthy
value. Defaults to application/json.



verify

The verify option, if supplied, is called as verify(req, res, buf, encoding),
where buf is a Buffer of the raw request body and encoding is the
encoding of the request. The parsing can be aborted by throwing an error.





bodyParser.raw([options])

Returns middleware that parses all bodies as a Buffer and only looks at
requests where the Content-Type header matches the type option. This
parser supports automatic inflation of gzip and deflate encodings.

A new body object containing the parsed data is populated on the request
object after the middleware (i.e. req.body). This will be a Buffer object
of the body.


Options

The raw function takes an optional options object that may contain any of
the following keys:


inflate

When set to true, then deflated (compressed) bodies will be inflated; when
false, deflated bodies are rejected. Defaults to true.



limit

Controls the maximum request body size. If this is a number, then the value
specifies the number of bytes; if it is a string, the value is passed to the
bytes [https://www.npmjs.com/package/bytes] library for parsing. Defaults
to '100kb'.



type

The type option is used to determine what media type the middleware will
parse. This option can be a string, array of strings, or a function.
If not a function, type option is passed directly to the
type-is [https://www.npmjs.org/package/type-is#readme] library and this
can be an extension name (like bin), a mime type (like
application/octet-stream), or a mime type with a wildcard (like */* or
application/*). If a function, the type option is called as fn(req)
and the request is parsed if it returns a truthy value. Defaults to
application/octet-stream.



verify

The verify option, if supplied, is called as verify(req, res, buf, encoding),
where buf is a Buffer of the raw request body and encoding is the
encoding of the request. The parsing can be aborted by throwing an error.





bodyParser.text([options])

Returns middleware that parses all bodies as a string and only looks at
requests where the Content-Type header matches the type option. This
parser supports automatic inflation of gzip and deflate encodings.

A new body string containing the parsed data is populated on the request
object after the middleware (i.e. req.body). This will be a string of the
body.


Options

The text function takes an optional options object that may contain any of
the following keys:


defaultCharset

Specify the default character set for the text content if the charset is not
specified in the Content-Type header of the request. Defaults to utf-8.



inflate

When set to true, then deflated (compressed) bodies will be inflated; when
false, deflated bodies are rejected. Defaults to true.



limit

Controls the maximum request body size. If this is a number, then the value
specifies the number of bytes; if it is a string, the value is passed to the
bytes [https://www.npmjs.com/package/bytes] library for parsing. Defaults
to '100kb'.



type

The type option is used to determine what media type the middleware will
parse. This option can be a string, array of strings, or a function. If not
a function, type option is passed directly to the
type-is [https://www.npmjs.org/package/type-is#readme] library and this can
be an extension name (like txt), a mime type (like text/plain), or a mime
type with a wildcard (like */* or text/*). If a function, the type
option is called as fn(req) and the request is parsed if it returns a
truthy value. Defaults to text/plain.



verify

The verify option, if supplied, is called as verify(req, res, buf, encoding),
where buf is a Buffer of the raw request body and encoding is the
encoding of the request. The parsing can be aborted by throwing an error.





bodyParser.urlencoded([options])

Returns middleware that only parses urlencoded bodies and only looks at
requests where the Content-Type header matches the type option. This
parser accepts only UTF-8 encoding of the body and supports automatic
inflation of gzip and deflate encodings.

A new body object containing the parsed data is populated on the request
object after the middleware (i.e. req.body). This object will contain
key-value pairs, where the value can be a string or array (when extended is
false), or any type (when extended is true).


Options

The urlencoded function takes an optional options object that may contain
any of the following keys:


extended

The extended option allows to choose between parsing the URL-encoded data
with the querystring library (when false) or the qs library (when
true). The “extended” syntax allows for rich objects and arrays to be
encoded into the URL-encoded format, allowing for a JSON-like experience
with URL-encoded. For more information, please
see the qs library [https://www.npmjs.org/package/qs#readme].

Defaults to true, but using the default has been deprecated. Please
research into the difference between qs and querystring and choose the
appropriate setting.



inflate

When set to true, then deflated (compressed) bodies will be inflated; when
false, deflated bodies are rejected. Defaults to true.



limit

Controls the maximum request body size. If this is a number, then the value
specifies the number of bytes; if it is a string, the value is passed to the
bytes [https://www.npmjs.com/package/bytes] library for parsing. Defaults
to '100kb'.



parameterLimit

The parameterLimit option controls the maximum number of parameters that
are allowed in the URL-encoded data. If a request contains more parameters
than this value, a 413 will be returned to the client. Defaults to 1000.



type

The type option is used to determine what media type the middleware will
parse. This option can be a string, array of strings, or a function. If not
a function, type option is passed directly to the
type-is [https://www.npmjs.org/package/type-is#readme] library and this can
be an extension name (like urlencoded), a mime type (like
application/x-www-form-urlencoded), or a mime type with a wildcard (like
*/x-www-form-urlencoded). If a function, the type option is called as
fn(req) and the request is parsed if it returns a truthy value. Defaults
to application/x-www-form-urlencoded.



verify

The verify option, if supplied, is called as verify(req, res, buf, encoding),
where buf is a Buffer of the raw request body and encoding is the
encoding of the request. The parsing can be aborted by throwing an error.






Errors

The middlewares provided by this module create errors depending on the error
condition during parsing. The errors will typically have a status/statusCode
property that contains the suggested HTTP response code, an expose property
to determine if the message property should be displayed to the client, a
type property to determine the type of error without matching against the
message, and a body property containing the read body, if available.

The following are the common errors emitted, though any error can come through
for various reasons.


content encoding unsupported

This error will occur when the request had a Content-Encoding header that
contained an encoding but the “inflation” option was set to false. The
status property is set to 415, the type property is set to
'encoding.unsupported', and the charset property will be set to the
encoding that is unsupported.



request aborted

This error will occur when the request is aborted by the client before reading
the body has finished. The received property will be set to the number of
bytes received before the request was aborted and the expected property is
set to the number of expected bytes. The status property is set to 400
and type property is set to 'request.aborted'.



request entity too large

This error will occur when the request body’s size is larger than the “limit”
option. The limit property will be set to the byte limit and the length
property will be set to the request body’s length. The status property is
set to 413 and the type property is set to 'entity.too.large'.



request size did not match content length

This error will occur when the request’s length did not match the length from
the Content-Length header. This typically occurs when the request is malformed,
typically when the Content-Length header was calculated based on characters
instead of bytes. The status property is set to 400 and the type property
is set to 'request.size.invalid'.



stream encoding should not be set

This error will occur when something called the req.setEncoding method prior
to this middleware. This module operates directly on bytes only and you cannot
call req.setEncoding when using this module. The status property is set to
500 and the type property is set to 'stream.encoding.set'.



too many parameters

This error will occur when the content of the request exceeds the configured
parameterLimit for the urlencoded parser. The status property is set to
413 and the type property is set to 'parameters.too.many'.



unsupported charset “BOGUS”

This error will occur when the request had a charset parameter in the
Content-Type header, but the iconv-lite module does not support it OR the
parser does not support it. The charset is contained in the message as well
as in the charset property. The status property is set to 415, the
type property is set to 'charset.unsupported', and the charset property
is set to the charset that is unsupported.



unsupported content encoding “bogus”

This error will occur when the request had a Content-Encoding header that
contained an unsupported encoding. The encoding is contained in the message
as well as in the encoding property. The status property is set to 415,
the type property is set to 'encoding.unsupported', and the encoding
property is set to the encoding that is unsupported.




Examples


Express/Connect top-level generic

This example demonstrates adding a generic JSON and URL-encoded parser as a
top-level middleware, which will parse the bodies of all incoming requests.
This is the simplest setup.

var express = require('express')
var bodyParser = require('body-parser')

var app = express()

// parse application/x-www-form-urlencoded
app.use(bodyParser.urlencoded({ extended: false }))

// parse application/json
app.use(bodyParser.json())

app.use(function (req, res) {
  res.setHeader('Content-Type', 'text/plain')
  res.write('you posted:\n')
  res.end(JSON.stringify(req.body, null, 2))
})







Express route-specific

This example demonstrates adding body parsers specifically to the routes that
need them. In general, this is the most recommended way to use body-parser with
Express.

var express = require('express')
var bodyParser = require('body-parser')

var app = express()

// create application/json parser
var jsonParser = bodyParser.json()

// create application/x-www-form-urlencoded parser
var urlencodedParser = bodyParser.urlencoded({ extended: false })

// POST /login gets urlencoded bodies
app.post('/login', urlencodedParser, function (req, res) {
  if (!req.body) return res.sendStatus(400)
  res.send('welcome, ' + req.body.username)
})

// POST /api/users gets JSON bodies
app.post('/api/users', jsonParser, function (req, res) {
  if (!req.body) return res.sendStatus(400)
  // create user in req.body
})







Change accepted type for parsers

All the parsers accept a type option which allows you to change the
Content-Type that the middleware will parse.

var express = require('express')
var bodyParser = require('body-parser')

var app = express()

// parse various different custom JSON types as JSON
app.use(bodyParser.json({ type: 'application/*+json' }))

// parse some custom thing into a Buffer
app.use(bodyParser.raw({ type: 'application/vnd.custom-type' }))

// parse an HTML body into a string
app.use(bodyParser.text({ type: 'text/html' }))








License

MIT





          

      

      

    

  

  
    

    3.0.0 / 2017-08-31
    

    
 
  

    
      
          
            
  
3.0.0 / 2017-08-31


	Change “kB” to “KB” in format output


	Remove support for Node.js 0.6


	Remove support for ComponentJS






2.5.0 / 2017-03-24


	Add option “unit”






2.4.0 / 2016-06-01


	Add option “unitSeparator”






2.3.0 / 2016-02-15


	Drop partial bytes on all parsed units


	Fix non-finite numbers to .format to return null


	Fix parsing byte string that looks like hex


	perf: hoist regular expressions






2.2.0 / 2015-11-13


	add option “decimalPlaces”


	add option “fixedDecimals”






2.1.0 / 2015-05-21


	add .format export


	add .parse export






2.0.2 / 2015-05-20


	remove map recreation


	remove unnecessary object construction






2.0.1 / 2015-05-07


	fix browserify require


	remove node.extend dependency






2.0.0 / 2015-04-12


	add option “case”


	add option “thousandsSeparator”


	return “null” on invalid parse input


	support proper round-trip: bytes(bytes(num)) === num


	units no longer case sensitive when parsing






1.0.0 / 2014-05-05


	add negative support. fixes #6






0.3.0 / 2014-03-19


	added terabyte support






0.2.1 / 2013-04-01


	add .component






0.2.0 / 2012-10-28


	bytes(200).should.eql(’200b’)






0.1.0 / 2012-07-04


	add bytes to string conversion [yields]







          

      

      

    

  

  
    

    Bytes utility
    

    
 
  

    
      
          
            
  
Bytes utility

[image: ../../../../_images/bytes2.svg]NPM Version [https://npmjs.org/package/bytes]
[image: ../../../../_images/bytes3.svg]NPM Downloads [https://npmjs.org/package/bytes]
[image: ../../../../_images/master31.svg]Build Status [https://travis-ci.org/visionmedia/bytes.js]
[image: ../../../../_images/master32.svg]Test Coverage [https://coveralls.io/r/visionmedia/bytes.js?branch=master]

Utility to parse a string bytes (ex: 1TB) to bytes (1099511627776) and vice-versa.


Installation

This is a Node.js [https://nodejs.org/en/] module available through the
npm registry [https://www.npmjs.com/]. Installation is done using the
npm install command [https://docs.npmjs.com/getting-started/installing-npm-packages-locally]:

$ npm install bytes







Usage

var bytes = require('bytes');






bytes.format(number value, [options]): string｜null

Format the given value in bytes into a string. If the value is negative, it is kept as such. If it is a float, it is
rounded.

Arguments

| Name    | Type     | Description        |
|———|———-|——————–|
| value   | number | Value in bytes     |
| options | Object | Conversion options |

Options

| Property          | Type   | Description                                                                             |
|——————-|——–|—————————————————————————————–|
| decimalPlaces | number｜null | Maximum number of decimal places to include in output. Default value to 2. |
| fixedDecimals | boolean｜null | Whether to always display the maximum number of decimal places. Default value to false |
| thousandsSeparator | string｜null | Example of values: ' ', ',' and .… Default value to ''. |
| unit | string｜null | The unit in which the result will be returned (B/KB/MB/GB/TB). Default value to '' (which means auto detect). |
| unitSeparator | string｜null | Separator to use between number and unit. Default value to ''. |

Returns

| Name    | Type             | Description                                     |
|———|——————|————————————————-|
| results | string｜null | Return null upon error. String value otherwise. |

Example

bytes(1024);
// output: '1KB'

bytes(1000);
// output: '1000B'

bytes(1000, {thousandsSeparator: ' '});
// output: '1 000B'

bytes(1024 * 1.7, {decimalPlaces: 0});
// output: '2KB'

bytes(1024, {unitSeparator: ' '});
// output: '1 KB'







bytes.parse(string｜number value): number｜null

Parse the string value into an integer in bytes. If no unit is given, or value
is a number, it is assumed the value is in bytes.

Supported units and abbreviations are as follows and are case-insensitive:


	b for bytes


	kb for kilobytes


	mb for megabytes


	gb for gigabytes


	tb for terabytes




The units are in powers of two, not ten. This means 1kb = 1024b according to this parser.

Arguments

| Name          | Type   | Description        |
|—————|——–|——————–|
| value   | string｜number | String to parse, or number in bytes.   |

Returns

| Name    | Type        | Description             |
|———|————-|————————-|
| results | number｜null | Return null upon error. Value in bytes otherwise. |

Example

bytes('1KB');
// output: 1024

bytes('1024');
// output: 1024

bytes(1024);
// output: 1024








License

MIT





          

      

      

    

  

  
    

    0.4.23 / 2018-05-07
    

    
 
  

    
      
          
            
  
0.4.23 / 2018-05-07


	Fix deprecation warning in Node v10 due to the last usage of new Buffer (#185, by @felixbuenemann)


	Switched from NodeBuffer to Buffer in typings (#155 by @felixfbecker, #186 by @larssn)






0.4.22 / 2018-05-05


	Use older semver style for dependencies to be compatible with Node version 0.10 (#182, by @dougwilson)


	Fix tests to accomodate fixes in Node v10 (#182, by @dougwilson)






0.4.21 / 2018-04-06


	Fix encoding canonicalization (#156)


	Fix the paths in the “browser” field in package.json (#174 by @LMLB)


	Removed “contributors” section in package.json - see Git history instead.






0.4.20 / 2018-04-06


	Updated new Buffer() usages with recommended replacements as it’s being deprecated in Node v10 (#176, #178 by @ChALkeR)






0.4.19 / 2017-09-09


	Fixed iso8859-1 codec regression in handling untranslatable characters (#162, caused by #147)


	Re-generated windows1255 codec, because it was updated in iconv project


	Fixed grammar in error message when iconv-lite is loaded with encoding other than utf8






0.4.18 / 2017-06-13


	Fixed CESU-8 regression in Node v8.






0.4.17 / 2017-04-22


	Updated typescript definition file to support Angular 2 AoT mode (#153 by @larssn)






0.4.16 / 2017-04-22


	Added support for React Native (#150)


	Changed iso8859-1 encoding to usine internal ‘binary’ encoding, as it’s the same thing (#147 by @mscdex)


	Fixed typo in Readme (#138 by @jiangzhuo)


	Fixed build for Node v6.10+ by making correct version comparison


	Added a warning if iconv-lite is loaded not as utf-8 (see #142)






0.4.15 / 2016-11-21


	Fixed typescript type definition (#137)






0.4.14 / 2016-11-20


	Preparation for v1.0


	Added Node v6 and latest Node versions to Travis CI test rig


	Deprecated Node v0.8 support


	Typescript typings (@larssn)


	Fix encoding of Euro character in GB 18030 (inspired by @lygstate)


	Add ms prefix to dbcs windows encodings (@rokoroku)






0.4.13 / 2015-10-01


	Fix silly mistake in deprecation notice.






0.4.12 / 2015-09-26


	Node v4 support:


	Added CESU-8 decoding (#106)


	Added deprecation notice for extendNodeEncodings


	Added Travis tests for Node v4 and io.js latest (#105 by @Mithgol)










0.4.11 / 2015-07-03


	Added CESU-8 encoding.






0.4.10 / 2015-05-26


	Changed UTF-16 endianness heuristic to take into account any ASCII chars, not
just spaces. This should minimize the importance of “default” endianness.






0.4.9 / 2015-05-24


	Streamlined BOM handling: strip BOM by default, add BOM when encoding if
addBOM: true. Added docs to Readme.


	UTF16 now uses UTF16-LE by default.


	Fixed minor issue with big5 encoding.


	Added io.js testing on Travis; updated node-iconv version to test against.
Now we just skip testing SBCS encodings that node-iconv doesn’t support.


	(internal refactoring) Updated codec interface to use classes.


	Use strict mode in all files.






0.4.8 / 2015-04-14


	added alias UNICODE-1-1-UTF-7 for UTF-7 encoding (#94)






0.4.7 / 2015-02-05


	stop official support of Node.js v0.8. Should still work, but no guarantees.
reason: Packages needed for testing are hard to get on Travis CI.


	work in environment where Object.prototype is monkey patched with enumerable
props (#89).






0.4.6 / 2015-01-12


	fix rare aliases of single-byte encodings (thanks @mscdex)


	double the timeout for dbcs tests to make them less flaky on travis






0.4.5 / 2014-11-20


	fix windows-31j and x-sjis encoding support (@nleush)


	minor fix: undefined variable reference when internal error happens






0.4.4 / 2014-07-16


	added encodings UTF-7 (RFC2152) and UTF-7-IMAP (RFC3501 Section 5.1.3)


	fixed streaming base64 encoding






0.4.3 / 2014-06-14


	added encodings UTF-16BE and UTF-16 with BOM






0.4.2 / 2014-06-12


	don’t throw exception if extendNodeEncodings() is called more than once






0.4.1 / 2014-06-11


	codepage 808 added






0.4.0 / 2014-06-10


	code is rewritten from scratch


	all widespread encodings are supported


	streaming interface added


	browserify compatibility added


	(optional) extend core primitive encodings to make usage even simpler


	moved from vows to mocha as the testing framework







          

      

      

    

  

  
    

    Pure JS character encoding conversion
    

    
 
  

    
      
          
            
  
Pure JS character encoding conversion [image: ../../../../_images/iconv-lite.svg]Build Status [https://travis-ci.org/ashtuchkin/iconv-lite]


	Doesn’t need native code compilation. Works on Windows and in sandboxed environments like Cloud9 [http://c9.io].


	Used in popular projects like Express.js (body_parser) [https://github.com/expressjs/body-parser],
Grunt [http://gruntjs.com/], Nodemailer [http://www.nodemailer.com/], Yeoman [http://yeoman.io/] and others.


	Faster than node-iconv [https://github.com/bnoordhuis/node-iconv] (see below for performance comparison).


	Intuitive encode/decode API


	Streaming support for Node v0.10+


	[Deprecated] Can extend Node.js primitives (buffers, streams) to support all iconv-lite encodings.


	In-browser usage via Browserify [https://github.com/substack/node-browserify] (~180k gzip compressed with Buffer shim included).


	Typescript type definition file [https://github.com/ashtuchkin/iconv-lite/blob/master/lib/index.d.ts] included.


	React Native is supported (need to explicitly npm install two more modules: buffer and stream).


	License: MIT.




[image: ../../../../_images/iconv-lite.png]NPM Stats [https://npmjs.org/packages/iconv-lite/]



Usage


Basic API

var iconv = require('iconv-lite');

// Convert from an encoded buffer to js string.
str = iconv.decode(Buffer.from([0x68, 0x65, 0x6c, 0x6c, 0x6f]), 'win1251');

// Convert from js string to an encoded buffer.
buf = iconv.encode("Sample input string", 'win1251');

// Check if encoding is supported
iconv.encodingExists("us-ascii")







Streaming API (Node v0.10+)

// Decode stream (from binary stream to js strings)
http.createServer(function(req, res) {
    var converterStream = iconv.decodeStream('win1251');
    req.pipe(converterStream);

    converterStream.on('data', function(str) {
        console.log(str); // Do something with decoded strings, chunk-by-chunk.
    });
});

// Convert encoding streaming example
fs.createReadStream('file-in-win1251.txt')
    .pipe(iconv.decodeStream('win1251'))
    .pipe(iconv.encodeStream('ucs2'))
    .pipe(fs.createWriteStream('file-in-ucs2.txt'));

// Sugar: all encode/decode streams have .collect(cb) method to accumulate data.
http.createServer(function(req, res) {
    req.pipe(iconv.decodeStream('win1251')).collect(function(err, body) {
        assert(typeof body == 'string');
        console.log(body); // full request body string
    });
});







[Deprecated] Extend Node.js own encodings


NOTE: This doesn’t work on latest Node versions. See details [https://github.com/ashtuchkin/iconv-lite/wiki/Node-v4-compatibility].




// After this call all Node basic primitives will understand iconv-lite encodings.
iconv.extendNodeEncodings();

// Examples:
buf = new Buffer(str, 'win1251');
buf.write(str, 'gbk');
str = buf.toString('latin1');
assert(Buffer.isEncoding('iso-8859-15'));
Buffer.byteLength(str, 'us-ascii');

http.createServer(function(req, res) {
    req.setEncoding('big5');
    req.collect(function(err, body) {
        console.log(body);
    });
});

fs.createReadStream("file.txt", "shift_jis");

// External modules are also supported (if they use Node primitives, which they probably do).
request = require('request');
request({
    url: "http://github.com/", 
    encoding: "cp932"
});

// To remove extensions
iconv.undoExtendNodeEncodings();








Supported encodings


	All node.js native encodings: utf8, ucs2 / utf16-le, ascii, binary, base64, hex.


	Additional unicode encodings: utf16, utf16-be, utf-7, utf-7-imap.


	All widespread singlebyte encodings: Windows 125x family, ISO-8859 family,
IBM/DOS codepages, Macintosh family, KOI8 family, all others supported by iconv library.
Aliases like ‘latin1’, ‘us-ascii’ also supported.


	All widespread multibyte encodings: CP932, CP936, CP949, CP950, GB2312, GBK, GB18030, Big5, Shift_JIS, EUC-JP.




See all supported encodings on wiki [https://github.com/ashtuchkin/iconv-lite/wiki/Supported-Encodings].

Most singlebyte encodings are generated automatically from node-iconv [https://github.com/bnoordhuis/node-iconv]. Thank you Ben Noordhuis and libiconv authors!

Multibyte encodings are generated from Unicode.org mappings [http://www.unicode.org/Public/MAPPINGS/] and WHATWG Encoding Standard mappings [http://encoding.spec.whatwg.org/]. Thank you, respective authors!



Encoding/decoding speed

Comparison with node-iconv module (1000x256kb, on MacBook Pro, Core i5/2.6 GHz, Node v0.12.0).
Note: your results may vary, so please always check on your hardware.

operation             iconv@2.1.4   iconv-lite@0.4.7
----------------------------------------------------------
encode('win1251')     ~96 Mb/s      ~320 Mb/s
decode('win1251')     ~95 Mb/s      ~246 Mb/s







BOM handling


	Decoding: BOM is stripped by default, unless overridden by passing stripBOM: false in options
(f.ex. iconv.decode(buf, enc, {stripBOM: false})).
A callback might also be given as a stripBOM parameter - it’ll be called if BOM character was actually found.


	If you want to detect UTF-8 BOM when decoding other encodings, use node-autodetect-decoder-stream [https://github.com/danielgindi/node-autodetect-decoder-stream] module.


	Encoding: No BOM added, unless overridden by addBOM: true option.






UTF-16 Encodings

This library supports UTF-16LE, UTF-16BE and UTF-16 encodings. First two are straightforward, but UTF-16 is trying to be
smart about endianness in the following ways:


	Decoding: uses BOM and ‘spaces heuristic’ to determine input endianness. Default is UTF-16LE, but can be
overridden with defaultEncoding: 'utf-16be' option. Strips BOM unless stripBOM: false.


	Encoding: uses UTF-16LE and writes BOM by default. Use addBOM: false to override.






Other notes

When decoding, be sure to supply a Buffer to decode() method, otherwise bad things usually happen [https://github.com/ashtuchkin/iconv-lite/wiki/Use-Buffers-when-decoding].Untranslatable characters are set to � or ?. No transliteration is currently supported.Node versions 0.10.31 and 0.11.13 are buggy, don’t use them (see #65, #77).



Testing

$ git clone git@github.com:ashtuchkin/iconv-lite.git
$ cd iconv-lite
$ npm install
$ npm test
    
$ # To view performance:
$ node test/performance.js

$ # To view test coverage:
$ npm run coverage
$ open coverage/lcov-report/index.html








          

      

      

    

  

  
    

    2.3.3 / 2018-05-08
    

    
 
  

    
      
          
            
  
2.3.3 / 2018-05-08


	deps: http-errors@1.6.3


	deps: depd@~1.1.2


	deps: setprototypeof@1.1.0


	deps: statuses@’>= 1.3.1 < 2’






	deps: iconv-lite@0.4.23


	Fix loading encoding with year appended


	Fix deprecation warnings on Node.js 10+










2.3.2 / 2017-09-09


	deps: iconv-lite@0.4.19


	Fix ISO-8859-1regression


	Update Windows-1255










2.3.1 / 2017-09-07


	deps: bytes@3.0.0


	deps: http-errors@1.6.2


	deps: depd@1.1.1






	perf: skip buffer decoding on overage chunk






2.3.0 / 2017-08-04


	Add TypeScript definitions


	Use http-errors for standard emitted errors


	deps: bytes@2.5.0


	deps: iconv-lite@0.4.18


	Add support for React Native


	Add a warning if not loaded as utf-8


	Fix CESU-8 decoding in Node.js 8


	Improve speed of ISO-8859-1 encoding










2.2.0 / 2017-01-02


	deps: iconv-lite@0.4.15


	Added encoding MS-31J


	Added encoding MS-932


	Added encoding MS-936


	Added encoding MS-949


	Added encoding MS-950


	Fix GBK/GB18030 handling of Euro character










2.1.7 / 2016-06-19


	deps: bytes@2.4.0


	perf: remove double-cleanup on happy path






2.1.6 / 2016-03-07


	deps: bytes@2.3.0


	Drop partial bytes on all parsed units


	Fix parsing byte string that looks like hex










2.1.5 / 2015-11-30


	deps: bytes@2.2.0


	deps: iconv-lite@0.4.13






2.1.4 / 2015-09-27


	Fix masking critical errors from iconv-lite


	deps: iconv-lite@0.4.12


	Fix CESU-8 decoding in Node.js 4.x










2.1.3 / 2015-09-12


	Fix sync callback when attaching data listener causes sync read


	Node.js 0.10 compatibility issue










2.1.2 / 2015-07-05


	Fix error stack traces to skip makeError


	deps: iconv-lite@0.4.11


	Add encoding CESU-8










2.1.1 / 2015-06-14


	Use unpipe module for unpiping requests






2.1.0 / 2015-05-28


	deps: iconv-lite@0.4.10


	Improved UTF-16 endianness detection


	Leading BOM is now removed when decoding


	The encoding UTF-16 without BOM now defaults to UTF-16LE when detection fails










2.0.2 / 2015-05-21


	deps: bytes@2.1.0


	Slight optimizations










2.0.1 / 2015-05-10


	Fix a false-positive when unpiping in Node.js 0.8






2.0.0 / 2015-05-08


	Return a promise without callback instead of thunk


	deps: bytes@2.0.1


	units no longer case sensitive when parsing










1.3.4 / 2015-04-15


	Fix hanging callback if request aborts during read


	deps: iconv-lite@0.4.8


	Add encoding alias UNICODE-1-1-UTF-7










1.3.3 / 2015-02-08


	deps: iconv-lite@0.4.7


	Gracefully support enumerables on Object.prototype










1.3.2 / 2015-01-20


	deps: iconv-lite@0.4.6


	Fix rare aliases of single-byte encodings










1.3.1 / 2014-11-21


	deps: iconv-lite@0.4.5


	Fix Windows-31J and X-SJIS encoding support










1.3.0 / 2014-07-20


	Fully unpipe the stream on error


	Fixes Cannot switch to old mode now error on Node.js 0.10+










1.2.3 / 2014-07-20


	deps: iconv-lite@0.4.4


	Added encoding UTF-7










1.2.2 / 2014-06-19


	Send invalid encoding error to callback






1.2.1 / 2014-06-15


	deps: iconv-lite@0.4.3


	Added encodings UTF-16BE and UTF-16 with BOM










1.2.0 / 2014-06-13


	Passing string as options interpreted as encoding


	Support all encodings from iconv-lite






1.1.7 / 2014-06-12


	use string_decoder module from npm






1.1.6 / 2014-05-27


	check encoding for old streams1


	support node.js < 0.10.6






1.1.5 / 2014-05-14


	bump bytes






1.1.4 / 2014-04-19


	allow true as an option


	bump bytes






1.1.3 / 2014-03-02


	fix case when length=null






1.1.2 / 2013-12-01


	be less strict on state.encoding check






1.1.1 / 2013-11-27


	add engines






1.1.0 / 2013-11-27


	add err.statusCode and err.type


	allow for encoding option to be true


	pause the stream instead of dumping on error


	throw if the stream’s encoding is set






1.0.1 / 2013-11-19


	dont support streams1, throw if dev set encoding






1.0.0 / 2013-11-17


	rename expected option to length






0.2.0 / 2013-11-15


	republish






0.1.1 / 2013-11-15


	use bytes






0.1.0 / 2013-11-11


	generator support






0.0.3 / 2013-10-10


	update repo






0.0.2 / 2013-09-14


	dump stream on bad headers


	listen to events after defining received and buffers






0.0.1 / 2013-09-14


	Initial release







          

      

      

    

  

  
    

    raw-body
    

    
 
  

    
      
          
            
  
raw-body

[image: ../../../../_images/raw-body.svg]NPM Version [https://npmjs.org/package/raw-body]
[image: ../../../../_images/raw-body1.svg]NPM Downloads [https://npmjs.org/package/raw-body]
[image: ../../../../_images/raw-body2.svg]Node.js Version [https://nodejs.org/en/download/]
[image: ../../../../_images/master33.svg]Build status [https://travis-ci.org/stream-utils/raw-body]
[image: ../../../../_images/master34.svg]Test coverage [https://coveralls.io/r/stream-utils/raw-body?branch=master]

Gets the entire buffer of a stream either as a Buffer or a string.
Validates the stream’s length against an expected length and maximum limit.
Ideal for parsing request bodies.


Install

This is a Node.js [https://nodejs.org/en/] module available through the
npm registry [https://www.npmjs.com/]. Installation is done using the
npm install command [https://docs.npmjs.com/getting-started/installing-npm-packages-locally]:

$ npm install raw-body






TypeScript

This module includes a TypeScript [https://www.typescriptlang.org/]
declaration file to enable auto complete in compatible editors and type
information for TypeScript projects. This module depends on the Node.js
types, so install @types/node:

$ npm install @types/node








API

var getRawBody = require('raw-body')






getRawBody(stream, [options], [callback])

Returns a promise if no callback specified and global Promise exists.

Options:


	length - The length of the stream.
If the contents of the stream do not add up to this length,
an 400 error code is returned.


	limit - The byte limit of the body.
This is the number of bytes or any string format supported by
bytes [https://www.npmjs.com/package/bytes],
for example 1000, '500kb' or '3mb'.
If the body ends up being larger than this limit,
a 413 error code is returned.


	encoding - The encoding to use to decode the body into a string.
By default, a Buffer instance will be returned when no encoding is specified.
Most likely, you want utf-8, so setting encoding to true will decode as utf-8.
You can use any type of encoding supported by iconv-lite [https://www.npmjs.org/package/iconv-lite#readme].




You can also pass a string in place of options to just specify the encoding.

If an error occurs, the stream will be paused, everything unpiped,
and you are responsible for correctly disposing the stream.
For HTTP requests, no handling is required if you send a response.
For streams that use file descriptors, you should stream.destroy() or stream.close() to prevent leaks.




Errors

This module creates errors depending on the error condition during reading.
The error may be an error from the underlying Node.js implementation, but is
otherwise an error created by this module, which has the following attributes:


	limit - the limit in bytes


	length and expected - the expected length of the stream


	received - the received bytes


	encoding - the invalid encoding


	status and statusCode - the corresponding status code for the error


	type - the error type





Types

The errors from this module have a type property which allows for the progamatic
determination of the type of error returned.


encoding.unsupported

This error will occur when the encoding option is specified, but the value does
not map to an encoding supported by the iconv-lite [https://www.npmjs.org/package/iconv-lite#readme]
module.



entity.too.large

This error will occur when the limit option is specified, but the stream has
an entity that is larger.



request.aborted

This error will occur when the request stream is aborted by the client before
reading the body has finished.



request.size.invalid

This error will occur when the length option is specified, but the stream has
emitted more bytes.



stream.encoding.set

This error will occur when the given stream has an encoding set on it, making it
a decoded stream. The stream should not have an encoding set and is expected to
emit Buffer objects.





Examples


Simple Express example

var contentType = require('content-type')
var express = require('express')
var getRawBody = require('raw-body')

var app = express()

app.use(function (req, res, next) {
  getRawBody(req, {
    length: req.headers['content-length'],
    limit: '1mb',
    encoding: contentType.parse(req).parameters.charset
  }, function (err, string) {
    if (err) return next(err)
    req.text = string
    next()
  })
})

// now access req.text







Simple Koa example

var contentType = require('content-type')
var getRawBody = require('raw-body')
var koa = require('koa')

var app = koa()

app.use(function * (next) {
  this.text = yield getRawBody(this.req, {
    length: this.req.headers['content-length'],
    limit: '1mb',
    encoding: contentType.parse(this.req).parameters.charset
  })
  yield next
})

// now access this.text







Using as a promise

To use this library as a promise, simply omit the callback and a promise is
returned, provided that a global Promise is defined.

var getRawBody = require('raw-body')
var http = require('http')

var server = http.createServer(function (req, res) {
  getRawBody(req)
    .then(function (buf) {
      res.statusCode = 200
      res.end(buf.length + ' bytes submitted')
    })
    .catch(function (err) {
      res.statusCode = 500
      res.end(err.message)
    })
})

server.listen(3000)







Using with TypeScript

import * as getRawBody from 'raw-body';
import * as http from 'http';

const server = http.createServer((req, res) => {
  getRawBody(req)
  .then((buf) => {
    res.statusCode = 200;
    res.end(buf.length + ' bytes submitted');
  })
  .catch((err) => {
    res.statusCode = err.statusCode;
    res.end(err.message);
  });
});

server.listen(3000);








License

MIT





          

      

      

    

  

  
    

    express-prettify
    

    
 
  

    
      
          
            
  
express-prettify

[image: ../../_images/express-prettify.svg]NPM Version [https://npmjs.org/package/express-prettify]
[image: ../../_images/express-prettify1.svg]NPM Downloads [https://npmjs.org/package/express-prettify]
[image: ../../_images/express-prettify2.svg]Build Status [https://travis-ci.org/stoshiya/express-prettify]
[image: ../../_images/badge5.svg]Coverage Status [https://coveralls.io/github/stoshiya/express-prettify?branch=master]
[image: ../../_images/gpa.svg]Code Climate [https://codeclimate.com/github/stoshiya/express-prettify]
[image: https://david-dm.org/stoshiya/express-prettify/dev-status.svg]Dependencies [https://david-dm.org/stoshiya/express-prettify#info=devDependencies]
[image: ../../_images/badge6.svg]Known Vulnerabilities [https://snyk.io/test/github/stoshiya/express-prettify]

express middleware to send pretty printed json


Install

$ npm install express-prettify







Examples

"use strict";

var app = require('express')();
var pretty = require('express-prettify');

app.use(pretty({ query: 'pretty' }));

app.get('/', function(req, res) {
  res.json({ hello: 'world', body: 'This is pretty printed json' });
});

app.listen(3000);





$ node app.js &

$ curl http://localhost:3000?pretty
{
  "hello": "world",
  "body": "This is pretty printed json"
}

$ curl http://localhost:3000
{ "hello": "world", "body": "This is pretty printed json" }







License

MIT [http://stoshiya.mit-license.org/2016]





          

      

      

    

  

  
    

    3.0.2 / 2018-07-19
    

    
 
  

    
      
          
            
  
3.0.2 / 2018-07-19


	[Fix] Prevent merging __proto__ property (#48)


	[Dev Deps] update eslint, @ljharb/eslint-config, tape


	[Tests] up to node v10.7, v9.11, v8.11, v7.10, v6.14, v4.9; use nvm install-latest-npm






3.0.1 / 2017-04-27


	[Fix] deep extending should work with a non-object (#46)


	[Dev Deps] update tape, eslint, @ljharb/eslint-config


	[Tests] up to node v7.9, v6.10, v4.8; improve matrix


	[Docs] Switch from vb.teelaun.ch to versionbadg.es for the npm version badge SVG.


	[Docs] Add example to readme (#34)






3.0.0 / 2015-07-01


	[Possible breaking change] Use global “strict” directive (#32)


	[Tests] int is an ES3 reserved word


	[Tests] Test up to io.js v2.3


	[Tests] Add npm run eslint


	[Dev Deps] Update covert, jscs






2.0.1 / 2015-04-25


	Use an inline isArray check, for ES3 browsers. (#27)


	Some old browsers fail when an identifier is toString


	Test latest node and io.js versions on travis-ci; speed up builds


	Add license info to package.json (#25)


	Update tape, jscs


	Adding a CHANGELOG






2.0.0 / 2014-10-01


	Increase code coverage to 100%; run code coverage as part of tests


	Add npm run lint; Run linter as part of tests


	Remove nodeType and setInterval checks in isPlainObject


	Updating tape, jscs, covert


	General style and README cleanup






1.3.0 / 2014-06-20


	Add component.json for browser support (#18)


	Use SVG for badges in README (#16)


	Updating tape, covert


	Updating travis-ci to work with multiple node versions


	Fix deep === false bug (returning target as {}) (#14)


	Fixing constructor checks in isPlainObject


	Adding additional test coverage


	Adding npm run coverage


	Add LICENSE (#13)


	Adding a warning about false, per #11


	General style and whitespace cleanup






1.2.1 / 2013-09-14


	Fixing hasOwnProperty bugs that would only have shown up in specific browsers. Fixes #8


	Updating tape






1.2.0 / 2013-09-02


	Updating the README: add badges


	Adding a missing variable reference.


	Using tape instead of buster for tests; add more tests (#7)


	Adding node 0.10 to Travis CI (#6)


	Enabling “npm test” and cleaning up package.json (#5)


	Add Travis CI.






1.1.3 / 2012-12-06


	Added unit tests.


	Ensure extend function is named. (Looks nicer in a stack trace.)


	README cleanup.






1.1.1 / 2012-11-07


	README cleanup.


	Added installation instructions.


	Added a missing semicolon






1.0.0 / 2012-04-08


	Initial commit







          

      

      

    

  

  
    

    extend() for Node.js
    

    
 
  

    
      
          
            
  [image: ../../_images/node-extend.svg]Build Status [https://travis-ci.org/justmoon/node-extend]
[image: https://david-dm.org/justmoon/node-extend.svg]dependency status [https://david-dm.org/justmoon/node-extend]
[image: https://david-dm.org/justmoon/node-extend/dev-status.svg]dev dependency status [https://david-dm.org/justmoon/node-extend#info=devDependencies]


extend() for Node.js [image: ../../_images/node-extend1.svg]Version Badge [https://npmjs.org/package/extend]

node-extend is a port of the classic extend() method from jQuery. It behaves as you expect. It is simple, tried and true.

Notes:


	Since Node.js >= 4,
Object.assign [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/assign]
now offers the same functionality natively (but without the “deep copy” option).
See ECMAScript 2015 (ES6) in Node.js [https://nodejs.org/en/docs/es6].


	Some native implementations of Object.assign in both Node.js and many
browsers (since NPM modules are for the browser too) may not be fully
spec-compliant.
Check object.assign [https://www.npmjs.com/package/object.assign] module for
a compliant candidate.





Installation

This package is available on npm [https://npmjs.org/package/extend] as: extend

npm install extend







Usage

Syntax: extend ( [deep], target, object1, [objectN] )

Extend one object with one or more others, returning the modified object.

Example:

var extend = require('extend');
extend(targetObject, object1, object2);





Keep in mind that the target object will be modified, and will be returned from extend().

If a boolean true is specified as the first argument, extend performs a deep copy, recursively copying any objects it finds. Otherwise, the copy will share structure with the original object(s).
Undefined properties are not copied. However, properties inherited from the object’s prototype will be copied over.
Warning: passing false as the first argument is not supported.


Arguments


	deep Boolean (optional)
If set, the merge becomes recursive (i.e. deep copy).


	target	Object
The object to extend.


	object1	Object
The object that will be merged into the first.


	objectN Object (Optional)
More objects to merge into the first.







License

node-extend is licensed under the MIT License [http://opensource.org/licenses/MIT].



Acknowledgements

All credit to the jQuery authors for perfecting this amazing utility.

Ported to Node.js by Stefan Thomas [https://github.com/justmoon] with contributions by Jonathan Buchanan [https://github.com/insin] and Jordan Harband [https://github.com/ljharb].





          

      

      

    

  

  
    

    extsprintf: extended POSIX-style sprintf
    

    
 
  

    
      
          
            
  
extsprintf: extended POSIX-style sprintf

Stripped down version of s[n]printf(3c).  We make a best effort to throw an
exception when given a format string we don’t understand, rather than ignoring
it, so that we won’t break existing programs if/when we go implement the rest
of this.

This implementation currently supports specifying


	field alignment (’-’ flag),


	zero-pad (’0’ flag)


	always show numeric sign (’+’ flag),


	field width


	conversions for strings, decimal integers, and floats (numbers).


	argument size specifiers.  These are all accepted but ignored, since
Javascript has no notion of the physical size of an argument.




Everything else is currently unsupported, most notably: precision, unsigned
numbers, non-decimal numbers, and characters.

Besides the usual POSIX conversions, this implementation supports:


	%j: pretty-print a JSON object (using node’s “inspect”)


	%r: pretty-print an Error object






Example

First, install it:

# npm install extsprintf





Now, use it:

var mod_extsprintf = require('extsprintf');
console.log(mod_extsprintf.sprintf('hello %25s', 'world'));





outputs:

hello                     world







Also supported

printf: same args as sprintf, but prints the result to stdout

fprintf: same args as sprintf, preceded by a Node stream.  Prints the result
to the given stream.




          

      

      

    

  

  
    

    fast-deep-equal
    

    
 
  

    
      
          
            
  
fast-deep-equal

The fastest deep equal with ES6 Map, Set and Typed arrays support.

[image: ../../_images/fast-deep-equal.svg]Build Status [https://travis-ci.org/epoberezkin/fast-deep-equal]
[image: ../../_images/fast-deep-equal1.svg]npm [https://www.npmjs.com/package/fast-deep-equal]
[image: ../../_images/badge7.svg]Coverage Status [https://coveralls.io/github/epoberezkin/fast-deep-equal?branch=master]


Install

npm install fast-deep-equal







Features


	ES5 compatible


	works in node.js (8+) and browsers (IE9+)


	checks equality of Date and RegExp objects by value.




ES6 equal (require('fast-deep-equal/es6')) also supports:


	Maps


	Sets


	Typed arrays






Usage

var equal = require('fast-deep-equal');
console.log(equal({foo: 'bar'}, {foo: 'bar'})); // true





To support ES6 Maps, Sets and Typed arrays equality use:

var equal = require('fast-deep-equal/es6');
console.log(equal(Int16Array([1, 2]), Int16Array([1, 2]))); // true





To use with React (avoiding the traversal of React elements’ _owner
property that contains circular references and is not needed when
comparing the elements - borrowed from react-fast-compare [https://github.com/FormidableLabs/react-fast-compare]):

var equal = require('fast-deep-equal/react');
var equal = require('fast-deep-equal/es6/react');







Performance benchmark

Node.js v12.6.0:

fast-deep-equal x 261,950 ops/sec ±0.52% (89 runs sampled)
fast-deep-equal/es6 x 212,991 ops/sec ±0.34% (92 runs sampled)
fast-equals x 230,957 ops/sec ±0.83% (85 runs sampled)
nano-equal x 187,995 ops/sec ±0.53% (88 runs sampled)
shallow-equal-fuzzy x 138,302 ops/sec ±0.49% (90 runs sampled)
underscore.isEqual x 74,423 ops/sec ±0.38% (89 runs sampled)
lodash.isEqual x 36,637 ops/sec ±0.72% (90 runs sampled)
deep-equal x 2,310 ops/sec ±0.37% (90 runs sampled)
deep-eql x 35,312 ops/sec ±0.67% (91 runs sampled)
ramda.equals x 12,054 ops/sec ±0.40% (91 runs sampled)
util.isDeepStrictEqual x 46,440 ops/sec ±0.43% (90 runs sampled)
assert.deepStrictEqual x 456 ops/sec ±0.71% (88 runs sampled)

The fastest is fast-deep-equal





To run benchmark (requires node.js 6+):

npm run benchmark





Please note: this benchmark runs against the available test cases. To choose the most performant library for your application, it is recommended to benchmark against your data and to NOT expect this benchmark to reflect the performance difference in your application.



Enterprise support

fast-deep-equal package is a part of Tidelift enterprise subscription [https://tidelift.com/subscription/pkg/npm-fast-deep-equal?utm_source=npm-fast-deep-equal&utm_medium=referral&utm_campaign=enterprise&utm_term=repo] - it provides a centralised commercial support to open-source software users, in addition to the support provided by software maintainers.



Security contact

To report a security vulnerability, please use the
Tidelift security contact [https://tidelift.com/security].
Tidelift will coordinate the fix and disclosure. Please do NOT report security vulnerability via GitHub issues.



License

MIT [https://github.com/epoberezkin/fast-deep-equal/blob/master/LICENSE]





          

      

      

    

  

  
    

    fast-json-stable-stringify
    

    
 
  

    
      
          
            
  
fast-json-stable-stringify

Deterministic JSON.stringify() - a faster version of @substack [https://github.com/substack]’s json-stable-strigify without jsonify [https://github.com/substack/jsonify].

You can also pass in a custom comparison function.

[image: ../../_images/fast-json-stable-stringify.svg]Build Status [https://travis-ci.org/epoberezkin/fast-json-stable-stringify]
[image: ../../_images/badge8.svg]Coverage Status [https://coveralls.io/github/epoberezkin/fast-json-stable-stringify?branch=master]



example

var stringify = require('fast-json-stable-stringify');
var obj = { c: 8, b: [{z:6,y:5,x:4},7], a: 3 };
console.log(stringify(obj));





output:

{"a":3,"b":[{"x":4,"y":5,"z":6},7],"c":8}







methods

var stringify = require('fast-json-stable-stringify')






var str = stringify(obj, opts)

Return a deterministic stringified string str from the object obj.



options


cmp

If opts is given, you can supply an opts.cmp to have a custom comparison
function for object keys. Your function opts.cmp is called with these
parameters:

opts.cmp({ key: akey, value: avalue }, { key: bkey, value: bvalue })





For example, to sort on the object key names in reverse order you could write:

var stringify = require('fast-json-stable-stringify');

var obj = { c: 8, b: [{z:6,y:5,x:4},7], a: 3 };
var s = stringify(obj, function (a, b) {
    return a.key < b.key ? 1 : -1;
});
console.log(s);





which results in the output string:

{"c":8,"b":[{"z":6,"y":5,"x":4},7],"a":3}





Or if you wanted to sort on the object values in reverse order, you could write:

var stringify = require('fast-json-stable-stringify');

var obj = { d: 6, c: 5, b: [{z:3,y:2,x:1},9], a: 10 };
var s = stringify(obj, function (a, b) {
    return a.value < b.value ? 1 : -1;
});
console.log(s);





which outputs:

{"d":6,"c":5,"b":[{"z":3,"y":2,"x":1},9],"a":10}







cycles

Pass true in opts.cycles to stringify circular property as __cycle__ - the result will not be a valid JSON string in this case.

TypeError will be thrown in case of circular object without this option.





install

With npm [https://npmjs.org] do:

npm install fast-json-stable-stringify







benchmark

To run benchmark (requires Node.js 6+):

node benchmark





Results:

fast-json-stable-stringify x 17,189 ops/sec ±1.43% (83 runs sampled)
json-stable-stringify x 13,634 ops/sec ±1.39% (85 runs sampled)
fast-stable-stringify x 20,212 ops/sec ±1.20% (84 runs sampled)
faster-stable-stringify x 15,549 ops/sec ±1.12% (84 runs sampled)
The fastest is fast-stable-stringify






Enterprise support

fast-json-stable-stringify package is a part of Tidelift enterprise subscription [https://tidelift.com/subscription/pkg/npm-fast-json-stable-stringify?utm_source=npm-fast-json-stable-stringify&utm_medium=referral&utm_campaign=enterprise&utm_term=repo] - it provides a centralised commercial support to open-source software users, in addition to the support provided by software maintainers.



Security contact

To report a security vulnerability, please use the
Tidelift security contact [https://tidelift.com/security].
Tidelift will coordinate the fix and disclosure. Please do NOT report security vulnerability via GitHub issues.




license

MIT [https://github.com/epoberezkin/fast-json-stable-stringify/blob/master/LICENSE]




          

      

      

    

  

  
    

    1.1.1 / 2018-03-06
    

    
 
  

    
      
          
            
  
1.1.1 / 2018-03-06


	Fix 404 output for bad / missing pathnames


	deps: encodeurl@~1.0.2


	Fix encoding % as last character






	deps: statuses@~1.4.0






1.1.0 / 2017-09-24


	Use res.headersSent when available






1.0.6 / 2017-09-22


	deps: debug@2.6.9






1.0.5 / 2017-09-15


	deps: parseurl@~1.3.2


	perf: reduce overhead for full URLs


	perf: unroll the “fast-path” RegExp










1.0.4 / 2017-08-03


	deps: debug@2.6.8






1.0.3 / 2017-05-16


	deps: debug@2.6.7


	deps: ms@2.0.0










1.0.2 / 2017-04-22


	deps: debug@2.6.4


	deps: ms@0.7.3










1.0.1 / 2017-03-21


	Fix missing </html> in HTML document


	deps: debug@2.6.3


	Fix: DEBUG_MAX_ARRAY_LENGTH










1.0.0 / 2017-02-15


	Fix exception when err cannot be converted to a string


	Fully URL-encode the pathname in the 404 message


	Only include the pathname in the 404 message


	Send complete HTML document


	Set Content-Security-Policy: default-src 'self' header


	deps: debug@2.6.1


	Allow colors in workers


	Deprecated DEBUG_FD environment variable set to 3 or higher


	Fix error when running under React Native


	Use same color for same namespace


	deps: ms@0.7.2










0.5.1 / 2016-11-12


	Fix exception when err.headers is not an object


	deps: statuses@~1.3.1


	perf: hoist regular expressions


	perf: remove duplicate validation path






0.5.0 / 2016-06-15


	Change invalid or non-numeric status code to 500


	Overwrite status message to match set status code


	Prefer err.statusCode if err.status is invalid


	Set response headers from err.headers object


	Use statuses instead of http module for status messages


	Includes all defined status messages










0.4.1 / 2015-12-02


	deps: escape-html@~1.0.3


	perf: enable strict mode


	perf: optimize string replacement


	perf: use faster string coercion










0.4.0 / 2015-06-14


	Fix a false-positive when unpiping in Node.js 0.8


	Support statusCode property on Error objects


	Use unpipe module for unpiping requests


	deps: escape-html@1.0.2


	deps: on-finished@~2.3.0


	Add defined behavior for HTTP CONNECT requests


	Add defined behavior for HTTP Upgrade requests


	deps: ee-first@1.1.1






	perf: enable strict mode


	perf: remove argument reassignment






0.3.6 / 2015-05-11


	deps: debug@~2.2.0


	deps: ms@0.7.1










0.3.5 / 2015-04-22


	deps: on-finished@~2.2.1


	Fix isFinished(req) when data buffered










0.3.4 / 2015-03-15


	deps: debug@~2.1.3


	Fix high intensity foreground color for bold


	deps: ms@0.7.0










0.3.3 / 2015-01-01


	deps: debug@~2.1.1


	deps: on-finished@~2.2.0






0.3.2 / 2014-10-22


	deps: on-finished@~2.1.1


	Fix handling of pipelined requests










0.3.1 / 2014-10-16


	deps: debug@~2.1.0


	Implement DEBUG_FD env variable support










0.3.0 / 2014-09-17


	Terminate in progress response only on error


	Use on-finished to determine request status






0.2.0 / 2014-09-03


	Set X-Content-Type-Options: nosniff header


	deps: debug@~2.0.0






0.1.0 / 2014-07-16


	Respond after request fully read


	prevents hung responses and socket hang ups






	deps: debug@1.0.4






0.0.3 / 2014-07-11


	deps: debug@1.0.3


	Add support for multiple wildcards in namespaces










0.0.2 / 2014-06-19


	Handle invalid status codes






0.0.1 / 2014-06-05


	deps: debug@1.0.2






0.0.0 / 2014-06-05


	Extracted from connect/express







          

      

      

    

  

  
    

    finalhandler
    

    
 
  

    
      
          
            
  
finalhandler

[image: ../../_images/finalhandler.svg]NPM Version [https://npmjs.org/package/finalhandler]
[image: ../../_images/finalhandler1.svg]NPM Downloads [https://npmjs.org/package/finalhandler]
[image: ../../_images/finalhandler2.svg]Node.js Version [https://nodejs.org/en/download]
[image: ../../_images/finalhandler3.svg]Build Status [https://travis-ci.org/pillarjs/finalhandler]
[image: ../../_images/finalhandler4.svg]Test Coverage [https://coveralls.io/r/pillarjs/finalhandler?branch=master]

Node.js function to invoke as the final step to respond to HTTP request.


Installation

This is a Node.js [https://nodejs.org/en/] module available through the
npm registry [https://www.npmjs.com/]. Installation is done using the
npm install command [https://docs.npmjs.com/getting-started/installing-npm-packages-locally]:

$ npm install finalhandler







API

var finalhandler = require('finalhandler')






finalhandler(req, res, [options])

Returns function to be invoked as the final step for the given req and res.
This function is to be invoked as fn(err). If err is falsy, the handler will
write out a 404 response to the res. If it is truthy, an error response will
be written out to the res.

When an error is written, the following information is added to the response:


	The res.statusCode is set from err.status (or err.statusCode). If
this value is outside the 4xx or 5xx range, it will be set to 500.


	The res.statusMessage is set according to the status code.


	The body will be the HTML of the status code message if env is
'production', otherwise will be err.stack.


	Any headers specified in an err.headers object.




The final handler will also unpipe anything from req when it is invoked.


options.env

By default, the environment is determined by NODE_ENV variable, but it can be
overridden by this option.



options.onerror

Provide a function to be called with the err when it exists. Can be used for
writing errors to a central location without excessive function generation. Called
as onerror(err, req, res).





Examples


always 404

var finalhandler = require('finalhandler')
var http = require('http')

var server = http.createServer(function (req, res) {
  var done = finalhandler(req, res)
  done()
})

server.listen(3000)







perform simple action

var finalhandler = require('finalhandler')
var fs = require('fs')
var http = require('http')

var server = http.createServer(function (req, res) {
  var done = finalhandler(req, res)

  fs.readFile('index.html', function (err, buf) {
    if (err) return done(err)
    res.setHeader('Content-Type', 'text/html')
    res.end(buf)
  })
})

server.listen(3000)







use with middleware-style functions

var finalhandler = require('finalhandler')
var http = require('http')
var serveStatic = require('serve-static')

var serve = serveStatic('public')

var server = http.createServer(function (req, res) {
  var done = finalhandler(req, res)
  serve(req, res, done)
})

server.listen(3000)







keep log of all errors

var finalhandler = require('finalhandler')
var fs = require('fs')
var http = require('http')

var server = http.createServer(function (req, res) {
  var done = finalhandler(req, res, {onerror: logerror})

  fs.readFile('index.html', function (err, buf) {
    if (err) return done(err)
    res.setHeader('Content-Type', 'text/html')
    res.end(buf)
  })
})

server.listen(3000)

function logerror (err) {
  console.error(err.stack || err.toString())
}








License

MIT





          

      

      

    

  

  
    

    forever-agent
    

    
 
  

    
      
          
            
  
forever-agent

HTTP Agent that keeps socket connections alive between keep-alive requests. Formerly part of mikeal/request, now a standalone module.




          

      

      

    

  

  
    

    Form-Data
    

    
 
  

    
      
          
            
  
Form-Data [image: ../../_images/form-data.svg]NPM Module [https://www.npmjs.com/package/form-data] [image: ../../_images/gitterbadge.svg]Join the chat at https://gitter.im/form-data/form-data [https://gitter.im/form-data/form-data]

A library to create readable "multipart/form-data" streams. Can be used to submit forms and file uploads to other web applications.

The API of this library is inspired by the XMLHttpRequest-2 FormData Interface [http://dev.w3.org/2006/webapi/XMLHttpRequest-2/Overview.html#the-formdata-interface].

[image: ../../_images/v2.3.3.svg]Linux Build [https://travis-ci.org/form-data/form-data]
[image: ../../_images/v2.3.31.svg]MacOS Build [https://travis-ci.org/form-data/form-data]
[image: ../../_images/v2.3.32.svg]Windows Build [https://ci.appveyor.com/project/alexindigo/form-data]

[image: ../../_images/v2.3.33.svg]Coverage Status [https://coveralls.io/github/form-data/form-data?branch=master]
[image: ../../_images/form-data1.svg]Dependency Status [https://david-dm.org/form-data/form-data]
[image: https://www.bithound.io/github/form-data/form-data/badges/score.svg]bitHound Overall Score [https://www.bithound.io/github/form-data/form-data]


Install

npm install --save form-data







Usage

In this example we are constructing a form with 3 fields that contain a string,
a buffer and a file stream.

var FormData = require('form-data');
var fs = require('fs');

var form = new FormData();
form.append('my_field', 'my value');
form.append('my_buffer', new Buffer(10));
form.append('my_file', fs.createReadStream('/foo/bar.jpg'));





Also you can use http-response stream:

var FormData = require('form-data');
var http = require('http');

var form = new FormData();

http.request('http://nodejs.org/images/logo.png', function(response) {
  form.append('my_field', 'my value');
  form.append('my_buffer', new Buffer(10));
  form.append('my_logo', response);
});





Or @mikeal’s request [https://github.com/request/request] stream:

var FormData = require('form-data');
var request = require('request');

var form = new FormData();

form.append('my_field', 'my value');
form.append('my_buffer', new Buffer(10));
form.append('my_logo', request('http://nodejs.org/images/logo.png'));





In order to submit this form to a web application, call submit(url, [callback]) method:

form.submit('http://example.org/', function(err, res) {
  // res – response object (http.IncomingMessage)  //
  res.resume();
});





For more advanced request manipulations submit() method returns http.ClientRequest object, or you can choose from one of the alternative submission methods.


Custom options

You can provide custom options, such as maxDataSize:

var FormData = require('form-data');

var form = new FormData({ maxDataSize: 20971520 });
form.append('my_field', 'my value');
form.append('my_buffer', /* something big */);





List of available options could be found in combined-stream [https://github.com/felixge/node-combined-stream/blob/master/lib/combined_stream.js#L7-L15]



Alternative submission methods

You can use node’s http client interface:

var http = require('http');

var request = http.request({
  method: 'post',
  host: 'example.org',
  path: '/upload',
  headers: form.getHeaders()
});

form.pipe(request);

request.on('response', function(res) {
  console.log(res.statusCode);
});





Or if you would prefer the 'Content-Length' header to be set for you:

form.submit('example.org/upload', function(err, res) {
  console.log(res.statusCode);
});





To use custom headers and pre-known length in parts:

var CRLF = '\r\n';
var form = new FormData();

var options = {
  header: CRLF + '--' + form.getBoundary() + CRLF + 'X-Custom-Header: 123' + CRLF + CRLF,
  knownLength: 1
};

form.append('my_buffer', buffer, options);

form.submit('http://example.com/', function(err, res) {
  if (err) throw err;
  console.log('Done');
});





Form-Data can recognize and fetch all the required information from common types of streams (fs.readStream, http.response and mikeal's request), for some other types of streams you’d need to provide “file”-related information manually:

someModule.stream(function(err, stdout, stderr) {
  if (err) throw err;

  var form = new FormData();

  form.append('file', stdout, {
    filename: 'unicycle.jpg', // ... or:
    filepath: 'photos/toys/unicycle.jpg',
    contentType: 'image/jpeg',
    knownLength: 19806
  });

  form.submit('http://example.com/', function(err, res) {
    if (err) throw err;
    console.log('Done');
  });
});





The filepath property overrides filename and may contain a relative path. This is typically used when uploading multiple files from a directory [https://wicg.github.io/entries-api/#dom-htmlinputelement-webkitdirectory].

For edge cases, like POST request to URL with query string or to pass HTTP auth credentials, object can be passed to form.submit() as first parameter:

form.submit({
  host: 'example.com',
  path: '/probably.php?extra=params',
  auth: 'username:password'
}, function(err, res) {
  console.log(res.statusCode);
});





In case you need to also send custom HTTP headers with the POST request, you can use the headers key in first parameter of form.submit():

form.submit({
  host: 'example.com',
  path: '/surelynot.php',
  headers: {'x-test-header': 'test-header-value'}
}, function(err, res) {
  console.log(res.statusCode);
});







Integration with other libraries


Request

Form submission using  request [https://github.com/request/request]:

var formData = {
  my_field: 'my_value',
  my_file: fs.createReadStream(__dirname + '/unicycle.jpg'),
};

request.post({url:'http://service.com/upload', formData: formData}, function(err, httpResponse, body) {
  if (err) {
    return console.error('upload failed:', err);
  }
  console.log('Upload successful!  Server responded with:', body);
});





For more details see request readme [https://github.com/request/request#multipartform-data-multipart-form-uploads].



node-fetch

You can also submit a form using node-fetch [https://github.com/bitinn/node-fetch]:

var form = new FormData();

form.append('a', 1);

fetch('http://example.com', { method: 'POST', body: form })
    .then(function(res) {
        return res.json();
    }).then(function(json) {
        console.log(json);
    });









Notes


	getLengthSync() method DOESN’T calculate length for streams, use knownLength options as workaround.


	Starting version 2.x FormData has dropped support for node@0.10.x.






License

Form-Data is released under the MIT license.





          

      

      

    

  

  
    

    0.1.2 / 2017-09-14
    

    
 
  

    
      
          
            
  
0.1.2 / 2017-09-14


	perf: improve header parsing


	perf: reduce overhead when no X-Forwarded-For header






0.1.1 / 2017-09-10


	Fix trimming leading / trailing OWS


	perf: hoist regular expression






0.1.0 / 2014-09-21


	Initial release







          

      

      

    

  

  
    

    forwarded
    

    
 
  

    
      
          
            
  
forwarded

[image: ../../_images/forwarded.svg]NPM Version [https://npmjs.org/package/forwarded]
[image: ../../_images/forwarded1.svg]NPM Downloads [https://npmjs.org/package/forwarded]
[image: ../../_images/forwarded2.svg]Node.js Version [https://nodejs.org/en/download/]
[image: ../../_images/master35.svg]Build Status [https://travis-ci.org/jshttp/forwarded]
[image: ../../_images/master36.svg]Test Coverage [https://coveralls.io/r/jshttp/forwarded?branch=master]

Parse HTTP X-Forwarded-For header


Installation

This is a Node.js [https://nodejs.org/en/] module available through the
npm registry [https://www.npmjs.com/]. Installation is done using the
npm install command [https://docs.npmjs.com/getting-started/installing-npm-packages-locally]:

$ npm install forwarded







API

var forwarded = require('forwarded')






forwarded(req)

var addresses = forwarded(req)





Parse the X-Forwarded-For header from the request. Returns an array
of the addresses, including the socket address for the req, in reverse
order (i.e. index 0 is the socket address and the last index is the
furthest address, typically the end-user).




Testing

$ npm test







License

MIT





          

      

      

    

  

  
    

    0.5.2 / 2017-09-13
    

    
 
  

    
      
          
            
  
0.5.2 / 2017-09-13


	Fix regression matching multiple ETags in If-None-Match


	perf: improve If-None-Match token parsing






0.5.1 / 2017-09-11


	Fix handling of modified headers with invalid dates


	perf: improve ETag match loop






0.5.0 / 2017-02-21


	Fix incorrect result when If-None-Match has both * and ETags


	Fix weak ETag matching to match spec


	perf: delay reading header values until needed


	perf: skip checking modified time if ETag check failed


	perf: skip parsing If-None-Match when no ETag header


	perf: use Date.parse instead of new Date






0.4.0 / 2017-02-05


	Fix false detection of no-cache request directive


	perf: enable strict mode


	perf: hoist regular expressions


	perf: remove duplicate conditional


	perf: remove unnecessary boolean coercions






0.3.0 / 2015-05-12


	Add weak ETag matching support






0.2.4 / 2014-09-07


	Support Node.js 0.6






0.2.3 / 2014-09-07


	Move repository to jshttp






0.2.2 / 2014-02-19


	Revert “Fix for blank page on Safari reload”






0.2.1 / 2014-01-29


	Fix for blank page on Safari reload






0.2.0 / 2013-08-11


	Return stale for Cache-Control: no-cache






0.1.0 / 2012-06-15


	Add If-None-Match: * support






0.0.1 / 2012-06-10


	Initial release







          

      

      

    

  

  
    

    fresh
    

    
 
  

    
      
          
            
  
fresh

[image: ../../_images/fresh.svg]NPM Version [https://npmjs.org/package/fresh]
[image: ../../_images/fresh1.svg]NPM Downloads [https://npmjs.org/package/fresh]
[image: ../../_images/fresh2.svg]Node.js Version [https://nodejs.org/en/]
[image: ../../_images/master37.svg]Build Status [https://travis-ci.org/jshttp/fresh]
[image: ../../_images/master38.svg]Test Coverage [https://coveralls.io/r/jshttp/fresh?branch=master]

HTTP response freshness testing


Installation

This is a Node.js [https://nodejs.org/en/] module available through the
npm registry [https://www.npmjs.com/]. Installation is done using the
npm install command [https://docs.npmjs.com/getting-started/installing-npm-packages-locally]:

$ npm install fresh







API

var fresh = require('fresh')






fresh(reqHeaders, resHeaders)

Check freshness of the response using request and response headers.

When the response is still “fresh” in the client’s cache true is
returned, otherwise false is returned to indicate that the client
cache is now stale and the full response should be sent.

When a client sends the Cache-Control: no-cache request header to
indicate an end-to-end reload request, this module will return false
to make handling these requests transparent.




Known Issues

This module is designed to only follow the HTTP specifications, not
to work-around all kinda of client bugs (especially since this module
typically does not recieve enough information to understand what the
client actually is).

There is a known issue that in certain versions of Safari, Safari
will incorrectly make a request that allows this module to validate
freshness of the resource even when Safari does not have a
representation of the resource in the cache. The module
jumanji [https://www.npmjs.com/package/jumanji] can be used in
an Express application to work-around this issue and also provides
links to further reading on this Safari bug.



Example


API usage

var reqHeaders = { 'if-none-match': '"foo"' }
var resHeaders = { 'etag': '"bar"' }
fresh(reqHeaders, resHeaders)
// => false

var reqHeaders = { 'if-none-match': '"foo"' }
var resHeaders = { 'etag': '"foo"' }
fresh(reqHeaders, resHeaders)
// => true







Using with Node.js http server

var fresh = require('fresh')
var http = require('http')

var server = http.createServer(function (req, res) {
  // perform server logic
  // ... including adding ETag / Last-Modified response headers

  if (isFresh(req, res)) {
    // client has a fresh copy of resource
    res.statusCode = 304
    res.end()
    return
  }

  // send the resource
  res.statusCode = 200
  res.end('hello, world!')
})

function isFresh (req, res) {
  return fresh(req.headers, {
    'etag': res.getHeader('ETag'),
    'last-modified': res.getHeader('Last-Modified')
  })
}

server.listen(3000)








License

MIT





          

      

      

    

  

  
    

    8.1.0 / 2019-06-28
    

    
 
  

    
      
          
            
  
8.1.0 / 2019-06-28


	Add support for promisified fs.realpath.native in Node v9.2+ (#650 [https://github.com/jprichardson/node-fs-extra/issues/650], #682 [https://github.com/jprichardson/node-fs-extra/pull/682])


	Update graceful-fs dependency (#700 [https://github.com/jprichardson/node-fs-extra/pull/700])


	Use graceful-fs everywhere (#700 [https://github.com/jprichardson/node-fs-extra/pull/700])






8.0.1 / 2019-05-13


	Fix bug Maximum call stack size exceeded error in util/stat (#679 [https://github.com/jprichardson/node-fs-extra/pull/679])






8.0.0 / 2019-05-11

NOTE: Node.js v6 support is deprecated, and will be dropped in the next major release.


	Use renameSync() under the hood in moveSync()


	Fix bug with bind-mounted directories in copy*() (#613 [https://github.com/jprichardson/node-fs-extra/issues/613], #618 [https://github.com/jprichardson/node-fs-extra/pull/618])


	Fix bug in move() with case-insensitive file systems


	Use fs.stat()’s bigint option in copy*() & move*() where possible (#657 [https://github.com/jprichardson/node-fs-extra/issues/657])






7.0.1 / 2018-11-07


	Fix removeSync() on Windows, in some cases, it would error out with ENOTEMPTY (#646 [https://github.com/jprichardson/node-fs-extra/pull/646])


	Document mode option for ensureDir*() (#587 [https://github.com/jprichardson/node-fs-extra/pull/587])


	Don’t include documentation files in npm package tarball (#642 [https://github.com/jprichardson/node-fs-extra/issues/642], #643 [https://github.com/jprichardson/node-fs-extra/pull/643])






7.0.0 / 2018-07-16


	BREAKING: Refine copy*() handling of symlinks to properly detect symlinks that point to the same file. (#582 [https://github.com/jprichardson/node-fs-extra/pull/582])


	Fix bug with copying write-protected directories (#600 [https://github.com/jprichardson/node-fs-extra/pull/600])


	Universalify fs.lchmod() (#596 [https://github.com/jprichardson/node-fs-extra/pull/596])


	Add engines field to package.json (#580 [https://github.com/jprichardson/node-fs-extra/pull/580])






6.0.1 / 2018-05-09


	Fix fs.promises ExperimentalWarning on Node v10.1.0 (#578 [https://github.com/jprichardson/node-fs-extra/pull/578])






6.0.0 / 2018-05-01


	Drop support for Node.js versions 4, 5, & 7 (#564 [https://github.com/jprichardson/node-fs-extra/pull/564])


	Rewrite move to use fs.rename where possible (#549 [https://github.com/jprichardson/node-fs-extra/pull/549])


	Don’t convert relative paths to absolute paths for filter (#554 [https://github.com/jprichardson/node-fs-extra/pull/554])


	copy*’s behavior when preserveTimestamps is false has been OS-dependent since 5.0.0, but that’s now explicitly noted in the docs (#563 [https://github.com/jprichardson/node-fs-extra/pull/563])


	Fix subdirectory detection for copy* & move* (#541 [https://github.com/jprichardson/node-fs-extra/pull/541])


	Handle case-insensitive paths correctly in copy* (#568 [https://github.com/jprichardson/node-fs-extra/pull/568])






5.0.0 / 2017-12-11

Significant refactor of copy() & copySync(), including breaking changes. No changes to other functions in this release.

Huge thanks to @manidlou [https://github.com/manidlou] for doing most of the work on this release.


	The filter option can no longer be a RegExp (must be a function). This was deprecated since fs-extra v1.0.0. #512 [https://github.com/jprichardson/node-fs-extra/pull/512]


	copy()’s filter option can now be a function that returns a Promise. #518 [https://github.com/jprichardson/node-fs-extra/pull/518]


	copy() & copySync() now use fs.copyFile()/fs.copyFileSync() in environments that support it (currently Node 8.5.0+). Older Node versions still get the old implementation. #505 [https://github.com/jprichardson/node-fs-extra/pull/505]


	Don’t allow copying a directory into itself. #83 [https://github.com/jprichardson/node-fs-extra/issues/83]


	Handle copying between identical files. #198 [https://github.com/jprichardson/node-fs-extra/issues/198]


	Error out when copying an empty folder to a path that already exists. #464 [https://github.com/jprichardson/node-fs-extra/issues/464]


	Don’t create dest’s parent if the filter function aborts the copy() operation. #517 [https://github.com/jprichardson/node-fs-extra/pull/517]


	Fix writeStream not being closed if there was an error in copy(). #516 [https://github.com/jprichardson/node-fs-extra/pull/516]






4.0.3 / 2017-12-05


	Fix wrong chmod values in fs.remove() #501 [https://github.com/jprichardson/node-fs-extra/pull/501]


	Fix TypeError on systems that don’t have some fs operations like lchown #520 [https://github.com/jprichardson/node-fs-extra/pull/520]






4.0.2 / 2017-09-12


	Added EOL option to writeJson* & outputJson* (via upgrade to jsonfile v4)


	Added promise support to fs.copyFile() [https://nodejs.org/api/fs.html#fs_fs_copyfile_src_dest_flags_callback] in Node 8.5+


	Added .js extension to main field in package.json for better tooling compatibility. #485 [https://github.com/jprichardson/node-fs-extra/pull/485]






4.0.1 / 2017-07-31


Fixed


	Previously, ensureFile() & ensureFileSync() would do nothing if the path was a directory. Now, they error out for consistency with ensureDir(). #465 [https://github.com/jprichardson/node-fs-extra/issues/465], #466 [https://github.com/jprichardson/node-fs-extra/pull/466], #470 [https://github.com/jprichardson/node-fs-extra/issues/470]







4.0.0 / 2017-07-14


Changed


	BREAKING: The promisified versions of fs.read() & fs.write() now return objects. See the docs for details. #436 [https://github.com/jprichardson/node-fs-extra/issues/436], #449 [https://github.com/jprichardson/node-fs-extra/pull/449]


	fs.move() now errors out when destination is a subdirectory of source. #458 [https://github.com/jprichardson/node-fs-extra/pull/458]


	Applied upstream fixes from rimraf to fs.remove() & fs.removeSync(). #459 [https://github.com/jprichardson/node-fs-extra/pull/459]






Fixed


	Got fs.outputJSONSync() working again; it was broken due to refactoring. #428 [https://github.com/jprichardson/node-fs-extra/pull/428]




Also clarified the docs in a few places.




3.0.1 / 2017-05-04


	Fix bug in move() & moveSync() when source and destination are the same, and source does not exist. #415 [https://github.com/jprichardson/node-fs-extra/pull/415]






3.0.0 / 2017-04-27


Added


	BREAKING: Added Promise support. All asynchronous native fs methods and fs-extra methods now return a promise if the callback is not passed. #403 [https://github.com/jprichardson/node-fs-extra/pull/403]


	pathExists(), a replacement for the deprecated fs.exists. pathExists has a normal error-first callback signature. Also added pathExistsSync, an alias to fs.existsSync, for completeness. #406 [https://github.com/jprichardson/node-fs-extra/pull/406]






Removed


	BREAKING: Removed support for setting the default spaces for writeJson(), writeJsonSync(), outputJson(), & outputJsonSync(). This was undocumented. #402 [https://github.com/jprichardson/node-fs-extra/pull/402]






Changed


	Upgraded jsonfile dependency to v3.0.0:


	BREAKING: Changed behavior of throws option for readJsonSync(); now does not throw filesystem errors when throws is false.






	BREAKING: writeJson(), writeJsonSync(), outputJson(), & outputJsonSync() now output minified JSON by default for consistency with JSON.stringify(); set the spaces option to 2 to override this new behavior. #402 [https://github.com/jprichardson/node-fs-extra/pull/402]


	Use Buffer.allocUnsafe() instead of new Buffer() in environments that support it. #394 [https://github.com/jprichardson/node-fs-extra/pull/394]






Fixed


	removeSync() silently failed on Windows in some cases. Now throws an EBUSY error. #408 [https://github.com/jprichardson/node-fs-extra/pull/408]







2.1.2 / 2017-03-16


Fixed


	Weird windows bug that resulted in ensureDir()’s callback being called twice in some cases. This bug may have also affected remove(). See #392 [https://github.com/jprichardson/node-fs-extra/issues/392], #393 [https://github.com/jprichardson/node-fs-extra/pull/393]







2.1.1 / 2017-03-15


Fixed


	Reverted 5597bd [https://github.com/jprichardson/node-fs-extra/commit/5597bd5b67f7d060f5f5bf26e9635be48330f5d7], this broke compatibility with Node.js versions v4+ but less than v4.5.0.


	Remove Buffer.alloc() usage in moveSync().







2.1.0 / 2017-03-15

Thanks to Mani Maghsoudlou (@manidlou) [https://github.com/manidlou] & Jan Peer Stöcklmair (@JPeer264) [https://github.com/JPeer264] for their extraordinary help with this release!


Added


	moveSync() See #309 [https://github.com/jprichardson/node-fs-extra/issues/309], #381 [https://github.com/jprichardson/node-fs-extra/pull/381]. (@manidlou [https://github.com/manidlou])


	copy() and copySync()’s filter option now gets the destination path passed as the second parameter. #366 [https://github.com/jprichardson/node-fs-extra/pull/366] (@manidlou [https://github.com/manidlou])






Changed


	Use Buffer.alloc() instead of deprecated new Buffer() in copySync(). #380 [https://github.com/jprichardson/node-fs-extra/pull/380] (@manidlou [https://github.com/manidlou])


	Refactored entire codebase to use ES6 features supported by Node.js v4+ #355 [https://github.com/jprichardson/node-fs-extra/issues/355]. (@JPeer264) [https://github.com/JPeer264]


	Refactored docs. (@manidlou [https://github.com/manidlou])






Fixed


	move() shouldn’t error out when source and dest are the same. #377 [https://github.com/jprichardson/node-fs-extra/issues/377], #378 [https://github.com/jprichardson/node-fs-extra/pull/378] (@jdalton [https://github.com/jdalton])







2.0.0 / 2017-01-16


Removed


	BREAKING: Removed support for Node v0.12. The Node foundation stopped officially supporting it
on Jan 1st, 2017.


	BREAKING: Remove walk() and walkSync(). walkSync() was only part of fs-extra for a little
over two months. Use klaw [https://github.com/jprichardson/node-klaw] instead of walk(), in fact, walk() was just
an alias to klaw. For walkSync() use klaw-sync [https://github.com/mawni/node-klaw-sync]. See: #338 [https://github.com/jprichardson/node-fs-extra/issues/338], #339 [https://github.com/jprichardson/node-fs-extra/pull/339]






Changed


	BREAKING: Renamed clobber to overwrite. This affects copy(), copySync(), and move(). #330 [https://github.com/jprichardson/node-fs-extra/pull/330], #333 [https://github.com/jprichardson/node-fs-extra/pull/333]


	Moved docs, to docs/. #340 [https://github.com/jprichardson/node-fs-extra/pull/340]






Fixed


	Apply filters to directories in copySync() like in copy(). #324 [https://github.com/jprichardson/node-fs-extra/pull/324]


	A specific condition when disk is under heavy use, copy() can fail. #326 [https://github.com/jprichardson/node-fs-extra/issues/326]







1.0.0 / 2016-11-01

After five years of development, we finally have reach the 1.0.0 milestone! Big thanks goes
to Ryan Zim [https://github.com/RyanZim] for leading the charge on this release!


Added


	walkSync()






Changed


	BREAKING: dropped Node v0.10 support.


	disabled rimaf globbing, wasn’t used. #280 [https://github.com/jprichardson/node-fs-extra/pull/280]


	deprecate copy()/copySync() option filter if it’s a RegExp. filter should now be a function.


	inline rimraf. This is temporary and was done because rimraf depended upon the beefy glob which fs-extra does not use. #300 [https://github.com/jprichardson/node-fs-extra/pull/300]






Fixed


	bug fix proper closing of file handle on utimesMillis() #271 [https://github.com/jprichardson/node-fs-extra/issues/271]


	proper escaping of files with dollar signs #291 [https://github.com/jprichardson/node-fs-extra/pull/291]


	copySync() failed if user didn’t own file. #199 [https://github.com/jprichardson/node-fs-extra/issues/199], #301 [https://github.com/jprichardson/node-fs-extra/pull/301]







0.30.0 / 2016-04-28


	Brought back Node v0.10 support. I didn’t realize there was still demand. Official support will end 2016-10-01.






0.29.0 / 2016-04-27


	BREAKING: removed support for Node v0.10. If you still want to use Node v0.10, everything should work except for ensureLink()/ensureSymlink(). Node v0.12 is still supported but will be dropped in the near future as well.






0.28.0 / 2016-04-17


	BREAKING: removed createOutputStream(). Use https://www.npmjs.com/package/create-output-stream. See: #192 [https://github.com/jprichardson/node-fs-extra/issues/192]


	mkdirs()/mkdirsSync() check for invalid win32 path chars. See: #209 [https://github.com/jprichardson/node-fs-extra/issues/209], #237 [https://github.com/jprichardson/node-fs-extra/issues/237]


	mkdirs()/mkdirsSync() if drive not mounted, error. See: #93 [https://github.com/jprichardson/node-fs-extra/issues/93]






0.27.0 / 2016-04-15


	add dereference option to copySync(). #235 [https://github.com/jprichardson/node-fs-extra/pull/235]






0.26.7 / 2016-03-16


	fixed copy() if source and dest are the same. #230 [https://github.com/jprichardson/node-fs-extra/pull/230]






0.26.6 / 2016-03-15


	fixed if emptyDir() does not have a callback: #229 [https://github.com/jprichardson/node-fs-extra/pull/229]






0.26.5 / 2016-01-27


	copy() with two arguments (w/o callback) was broken. See: #215 [https://github.com/jprichardson/node-fs-extra/pull/215]






0.26.4 / 2016-01-05


	copySync() made preserveTimestamps default consistent with copy() which is false. See: #208 [https://github.com/jprichardson/node-fs-extra/pull/208]






0.26.3 / 2015-12-17


	fixed copy() hangup in copying blockDevice / characterDevice / /dev/null. See: #193 [https://github.com/jprichardson/node-fs-extra/issues/193]






0.26.2 / 2015-11-02


	fixed outputJson{Sync}() spacing adherence to fs.spaces






0.26.1 / 2015-11-02


	fixed copySync() when clogger=true and the destination is read only. See: #190 [https://github.com/jprichardson/node-fs-extra/pull/190]






0.26.0 / 2015-10-25


	extracted the walk() function into its own module klaw [https://github.com/jprichardson/node-klaw].






0.25.0 / 2015-10-24


	now has a file walker walk()






0.24.0 / 2015-08-28


	removed alias delete() and deleteSync(). See: #171 [https://github.com/jprichardson/node-fs-extra/issues/171]






0.23.1 / 2015-08-07


	Better handling of errors for move() when moving across devices. #170 [https://github.com/jprichardson/node-fs-extra/pull/170]


	ensureSymlink() and ensureLink() should not throw errors if link exists. #169 [https://github.com/jprichardson/node-fs-extra/pull/169]






0.23.0 / 2015-08-06


	added ensureLink{Sync}() and ensureSymlink{Sync}(). See: #165 [https://github.com/jprichardson/node-fs-extra/pull/165]






0.22.1 / 2015-07-09


	Prevent calling hasMillisResSync() on module load. See: #149 [https://github.com/jprichardson/node-fs-extra/issues/149].
Fixes regression that was introduced in 0.21.0.






0.22.0 / 2015-07-09


	preserve permissions / ownership in copy(). See: #54 [https://github.com/jprichardson/node-fs-extra/issues/54]






0.21.0 / 2015-07-04


	add option to preserve timestamps in copy() and copySync(). See: #141 [https://github.com/jprichardson/node-fs-extra/pull/141]


	updated graceful-fs@3.x to 4.x. This brings in features from amazing-graceful-fs (much cleaner code / less hacks)






0.20.1 / 2015-06-23


	fixed regression caused by latest jsonfile update: See: https://github.com/jprichardson/node-jsonfile/issues/26






0.20.0 / 2015-06-19


	removed jsonfile aliases with File in the name, they weren’t documented and probably weren’t in use e.g.
this package had both fs.readJsonFile and fs.readJson that were aliases to each other, now use fs.readJson.


	preliminary walker created. Intentionally not documented. If you use it, it will almost certainly change and break your code.


	started moving tests inline


	upgraded to jsonfile@2.1.0, can now pass JSON revivers/replacers to readJson(), writeJson(), outputJson()






0.19.0 / 2015-06-08


	fs.copy() had support for Node v0.8, dropped support






0.18.4 / 2015-05-22


	fixed license field according to this: #136 [https://github.com/jprichardson/node-fs-extra/pull/136] and https://github.com/npm/npm/releases/tag/v2.10.0






0.18.3 / 2015-05-08


	bugfix: handle EEXIST when clobbering on some Linux systems. #134 [https://github.com/jprichardson/node-fs-extra/pull/134]






0.18.2 / 2015-04-17


	bugfix: allow F_OK (#120 [https://github.com/jprichardson/node-fs-extra/issues/120])






0.18.1 / 2015-04-15


	improved windows support for move() a bit. https://github.com/jprichardson/node-fs-extra/commit/92838980f25dc2ee4ec46b43ee14d3c4a1d30c1b


	fixed a lot of tests for Windows (appveyor)






0.18.0 / 2015-03-31


	added emptyDir() and emptyDirSync()






0.17.0 / 2015-03-28


	copySync added clobber option (before always would clobber, now if clobber is false it throws an error if the destination exists).
Only works with files at the moment.


	createOutputStream() added. See: #118 [https://github.com/jprichardson/node-fs-extra/pull/118]






0.16.5 / 2015-03-08


	fixed fs.move when clobber is true and destination is a directory, it should clobber. #114 [https://github.com/jprichardson/node-fs-extra/issues/114]






0.16.4 / 2015-03-01


	fs.mkdirs fix infinite loop on Windows. See: See https://github.com/substack/node-mkdirp/pull/74 and https://github.com/substack/node-mkdirp/issues/66






0.16.3 / 2015-01-28


	reverted https://github.com/jprichardson/node-fs-extra/commit/1ee77c8a805eba5b99382a2591ff99667847c9c9






0.16.2 / 2015-01-28


	fixed fs.copy for Node v0.8 (support is temporary and will be removed in the near future)






0.16.1 / 2015-01-28


	if setImmediate is not available, fall back to process.nextTick






0.16.0 / 2015-01-28


	bugfix fs.move() into itself. Closes #104 [https://github.com/jprichardson/node-fs-extra/issues/104]


	bugfix fs.move() moving directory across device. Closes #108 [https://github.com/jprichardson/node-fs-extra/issues/108]


	added coveralls support


	bugfix: nasty multiple callback fs.copy() bug. Closes #98 [https://github.com/jprichardson/node-fs-extra/issues/98]


	misc fs.copy code cleanups






0.15.0 / 2015-01-21


	dropped ncp, imported code in


	because of previous, now supports io.js


	graceful-fs is now a dependency






0.14.0 / 2015-01-05


	changed copy/copySync from fs.copy(src, dest, [filters], callback) to fs.copy(src, dest, [options], callback) #100 [https://github.com/jprichardson/node-fs-extra/pull/100]


	removed mockfs tests for mkdirp (this may be temporary, but was getting in the way of other tests)






0.13.0 / 2014-12-10


	removed touch and touchSync methods (they didn’t handle permissions like UNIX touch)


	updated "ncp": "^0.6.0" to "ncp": "^1.0.1"


	imported mkdirp => minimist and mkdirp are no longer dependences, should now appease people who wanted mkdirp to be --use_strict safe. See #59






0.12.0 / 2014-09-22


	copy symlinks in copySync() #85 [https://github.com/jprichardson/node-fs-extra/pull/85]






0.11.1 / 2014-09-02


	bugfix copySync() preserve file permissions #80 [https://github.com/jprichardson/node-fs-extra/pull/80]






0.11.0 / 2014-08-11


	upgraded "ncp": "^0.5.1" to "ncp": "^0.6.0"


	upgrade jsonfile": "^1.2.0" to jsonfile": "^2.0.0" => on write, json files now have \n at end. Also adds options.throws to readJsonSync()
see https://github.com/jprichardson/node-jsonfile#readfilesyncfilename-options for more details.






0.10.0 / 2014-06-29


	bugfix: upgaded "jsonfile": "~1.1.0" to "jsonfile": "^1.2.0", bumped minor because of jsonfile dep change
from ~ to ^. #67 [https://github.com/jprichardson/node-fs-extra/issues/67]






0.9.1 / 2014-05-22


	removed Node.js 0.8.x support, 0.9.0 was published moments ago and should have been done there






0.9.0 / 2014-05-22


	upgraded ncp from ~0.4.2 to ^0.5.1, #58 [https://github.com/jprichardson/node-fs-extra/issues/58]


	upgraded rimraf from ~2.2.6 to ^2.2.8


	upgraded mkdirp from 0.3.x to ^0.5.0


	added methods ensureFile(), ensureFileSync()


	added methods ensureDir(), ensureDirSync() #31 [https://github.com/jprichardson/node-fs-extra/issues/31]


	added move() method. From: https://github.com/andrewrk/node-mv






0.8.1 / 2013-10-24


	copy failed to return an error to the callback if a file doesn’t exist (ulikoehler #38 [https://github.com/jprichardson/node-fs-extra/pull/38], #39 [https://github.com/jprichardson/node-fs-extra/pull/39])






0.8.0 / 2013-10-14


	filter implemented on copy() and copySync(). (Srirangan / #36 [https://github.com/jprichardson/node-fs-extra/pull/36])






0.7.1 / 2013-10-12


	copySync() implemented (Srirangan / #33 [https://github.com/jprichardson/node-fs-extra/pull/33])


	updated to the latest jsonfile version 1.1.0 which gives options params for the JSON methods. Closes #32 [https://github.com/jprichardson/node-fs-extra/issues/32]






0.7.0 / 2013-10-07


	update readme conventions


	copy() now works if destination directory does not exist. Closes #29 [https://github.com/jprichardson/node-fs-extra/issues/29]






0.6.4 / 2013-09-05


	changed homepage field in package.json to remove NPM warning






0.6.3 / 2013-06-28


	changed JSON spacing default from 4 to 2 to follow Node conventions


	updated jsonfile dep


	updated rimraf dep






0.6.2 / 2013-06-28


	added .npmignore, #25 [https://github.com/jprichardson/node-fs-extra/pull/25]






0.6.1 / 2013-05-14


	modified for strict mode, closes #24 [https://github.com/jprichardson/node-fs-extra/issues/24]


	added outputJson()/outputJsonSync(), closes #23 [https://github.com/jprichardson/node-fs-extra/issues/23]






0.6.0 / 2013-03-18


	removed node 0.6 support


	added node 0.10 support


	upgraded to latest ncp and rimraf.


	optional graceful-fs support. Closes #17 [https://github.com/jprichardson/node-fs-extra/issues/17]






0.5.0 / 2013-02-03


	Removed readTextFile.


	Renamed readJSONFile to readJSON and readJson, same with write.


	Restructured documentation a bit. Added roadmap.






0.4.0 / 2013-01-28


	Set default spaces in jsonfile from 4 to 2.


	Updated testutil deps for tests.


	Renamed touch() to createFile()


	Added outputFile() and outputFileSync()


	Changed creation of testing diretories so the /tmp dir is not littered.


	Added readTextFile() and readTextFileSync().






0.3.2 / 2012-11-01


	Added touch() and touchSync() methods.






0.3.1 / 2012-10-11


	Fixed some stray globals.






0.3.0 / 2012-10-09


	Removed all CoffeeScript from tests.


	Renamed mkdir to mkdirs/mkdirp.






0.2.1 / 2012-09-11


	Updated rimraf dep.






0.2.0 / 2012-09-10


	Rewrote module into JavaScript. (Must still rewrite tests into JavaScript)


	Added all methods of jsonfile [https://github.com/jprichardson/node-jsonfile]


	Added Travis-CI.






0.1.3 / 2012-08-13


	Added method readJSONFile.






0.1.2 / 2012-06-15


	Bug fix: deleteSync() didn’t exist.


	Verified Node v0.8 compatibility.






0.1.1 / 2012-06-15


	Fixed bug in remove()/delete() that wouldn’t execute the function if a callback wasn’t passed.






0.1.0 / 2012-05-31


	Renamed copyFile() to copy(). copy() can now copy directories (recursively) too.


	Renamed rmrf() to remove().


	remove() aliased with delete().


	Added mkdirp capabilities. Named: mkdir(). Hides Node.js native mkdir().


	Instead of exporting the native fs module with new functions, I now copy over the native methods to a new object and export that instead.






0.0.4 / 2012-03-14


	Removed CoffeeScript dependency






0.0.3 / 2012-01-11


	Added methods rmrf and rmrfSync


	Moved tests from Jasmine to Mocha







          

      

      

    

  

  
    

    Node.js: fs-extra
    

    
 
  

    
      
          
            
  
Node.js: fs-extra

fs-extra adds file system methods that aren’t included in the native fs module and adds promise support to the fs methods. It also uses graceful-fs [https://github.com/isaacs/node-graceful-fs] to prevent EMFILE errors. It should be a drop in replacement for fs.

[image: ../../_images/fs-extra.svg]npm Package [https://www.npmjs.org/package/fs-extra]
[image: ../../_images/express2.svg]License [https://github.com/jprichardson/node-fs-extra/blob/master/LICENSE]
[image: ../../_images/master39.svg]build status [http://travis-ci.org/jprichardson/node-fs-extra]
[image: ../../_images/master40.svg]windows Build status [https://ci.appveyor.com/project/jprichardson/node-fs-extra/branch/master]
[image: ../../_images/fs-extra1.svg]downloads per month [https://www.npmjs.org/package/fs-extra]
[image: ../../_images/master41.svg]Coverage Status [https://coveralls.io/github/jprichardson/node-fs-extra]
[image: ../../_images/f1896fcbdac8c2253770dcedb81221d2f5d37cea.svg]JavaScript Style Guide [https://standardjs.com]


Why?

I got tired of including mkdirp, rimraf, and ncp in most of my projects.



Installation

npm install fs-extra







Usage

fs-extra is a drop in replacement for native fs. All methods in fs are attached to fs-extra. All fs methods return promises if the callback isn’t passed.

You don’t ever need to include the original fs module again:

const fs = require('fs') // this is no longer necessary





you can now do this:

const fs = require('fs-extra')





or if you prefer to make it clear that you’re using fs-extra and not fs, you may want
to name your fs variable fse like so:

const fse = require('fs-extra')





you can also keep both, but it’s redundant:

const fs = require('fs')
const fse = require('fs-extra')







Sync vs Async vs Async/Await

Most methods are async by default. All async methods will return a promise if the callback isn’t passed.

Sync methods on the other hand will throw if an error occurs.

Also Async/Await will throw an error if one occurs.

Example:

const fs = require('fs-extra')

// Async with promises:
fs.copy('/tmp/myfile', '/tmp/mynewfile')
  .then(() => console.log('success!'))
  .catch(err => console.error(err))

// Async with callbacks:
fs.copy('/tmp/myfile', '/tmp/mynewfile', err => {
  if (err) return console.error(err)
  console.log('success!')
})

// Sync:
try {
  fs.copySync('/tmp/myfile', '/tmp/mynewfile')
  console.log('success!')
} catch (err) {
  console.error(err)
}

// Async/Await:
async function copyFiles () {
  try {
    await fs.copy('/tmp/myfile', '/tmp/mynewfile')
    console.log('success!')
  } catch (err) {
    console.error(err)
  }
}

copyFiles()







Methods


Async


	copy


	emptyDir


	ensureFile


	ensureDir


	ensureLink


	ensureSymlink


	mkdirp


	mkdirs


	move


	outputFile


	outputJson


	pathExists


	readJson


	remove


	writeJson






Sync


	copySync


	emptyDirSync


	ensureFileSync


	ensureDirSync


	ensureLinkSync


	ensureSymlinkSync


	mkdirpSync


	mkdirsSync


	moveSync


	outputFileSync


	outputJsonSync


	pathExistsSync


	readJsonSync


	removeSync


	writeJsonSync




NOTE: You can still use the native Node.js methods. They are promisified and copied over to fs-extra. See notes on fs.read() & fs.write()



What happened to walk() and walkSync()?

They were removed from fs-extra in v2.0.0. If you need the functionality, walk and walkSync are available as separate packages, klaw [https://github.com/jprichardson/node-klaw] and klaw-sync [https://github.com/manidlou/node-klaw-sync].




Third Party


TypeScript

If you like TypeScript, you can use fs-extra with it: https://github.com/DefinitelyTyped/DefinitelyTyped/tree/master/types/fs-extra



File / Directory Watching

If you want to watch for changes to files or directories, then you should use chokidar [https://github.com/paulmillr/chokidar].



Obtain Filesystem (Devices, Partitions) Information

fs-filesystem [https://github.com/arthurintelligence/node-fs-filesystem] allows you to read the state of the filesystem of the host on which it is run. It returns information about both the devices and the partitions (volumes) of the system.



Misc.


	fs-extra-debug [https://github.com/jdxcode/fs-extra-debug] - Send your fs-extra calls to debug [https://npmjs.org/package/debug].


	mfs [https://github.com/cadorn/mfs] - Monitor your fs-extra calls.







Hacking on fs-extra

Wanna hack on fs-extra? Great! Your help is needed! fs-extra is one of the most depended upon Node.js packages [http://nodei.co/npm/fs-extra.png?downloads=true&downloadRank=true&stars=true]. This project
uses JavaScript Standard Style [https://github.com/feross/standard] - if the name or style choices bother you,
you’re gonna have to get over it :) If standard is good enough for npm, it’s good enough for fs-extra.

[image: ../../_images/badge9.svg]js-standard-style [https://github.com/feross/standard]

What’s needed?


	First, take a look at existing issues. Those are probably going to be where the priority lies.


	More tests for edge cases. Specifically on different platforms. There can never be enough tests.


	Improve test coverage. See coveralls output for more info.




Note: If you make any big changes, you should definitely file an issue for discussion first.


Running the Test Suite

fs-extra contains hundreds of tests.


	npm run lint: runs the linter (standard [http://standardjs.com/])


	npm run unit: runs the unit tests


	npm test: runs both the linter and the tests






Windows

If you run the tests on the Windows and receive a lot of symbolic link EPERM permission errors, it’s
because on Windows you need elevated privilege to create symbolic links. You can add this to your Windows’s
account by following the instructions here: http://superuser.com/questions/104845/permission-to-make-symbolic-links-in-windows-7
However, I didn’t have much luck doing this.

Since I develop on Mac OS X, I use VMWare Fusion for Windows testing. I create a shared folder that I map to a drive on Windows.
I open the Node.js command prompt and run as Administrator. I then map the network drive running the following command:

net use z: "\\vmware-host\Shared Folders"





I can then navigate to my fs-extra directory and run the tests.




Naming

I put a lot of thought into the naming of these functions. Inspired by @coolaj86’s request. So he deserves much of the credit for raising the issue. See discussion(s) here:


	https://github.com/jprichardson/node-fs-extra/issues/2


	https://github.com/flatiron/utile/issues/11


	https://github.com/ryanmcgrath/wrench-js/issues/29


	https://github.com/substack/node-mkdirp/issues/17




First, I believe that in as many cases as possible, the Node.js naming schemes [http://nodejs.org/api/fs.html] should be chosen. However, there are problems with the Node.js own naming schemes.

For example, fs.readFile() and fs.readdir(): the F is capitalized in File and the d is not capitalized in dir. Perhaps a bit pedantic, but they should still be consistent. Also, Node.js has chosen a lot of POSIX naming schemes, which I believe is great. See: fs.mkdir(), fs.rmdir(), fs.chown(), etc.

We have a dilemma though. How do you consistently name methods that perform the following POSIX commands: cp, cp -r, mkdir -p, and rm -rf?

My perspective: when in doubt, err on the side of simplicity. A directory is just a hierarchical grouping of directories and files. Consider that for a moment. So when you want to copy it or remove it, in most cases you’ll want to copy or remove all of its contents. When you want to create a directory, if the directory that it’s suppose to be contained in does not exist, then in most cases you’ll want to create that too.

So, if you want to remove a file or a directory regardless of whether it has contents, just call fs.remove(path). If you want to copy a file or a directory whether it has contents, just call fs.copy(source, destination). If you want to create a directory regardless of whether its parent directories exist, just call fs.mkdirs(path) or fs.mkdirp(path).



Credit

fs-extra wouldn’t be possible without using the modules from the following authors:


	Isaac Shlueter [https://github.com/isaacs]


	Charlie McConnel [https://github.com/avianflu]


	James Halliday [https://github.com/substack]


	Andrew Kelley [https://github.com/andrewrk]






License

Licensed under MIT

Copyright (c) 2011-2017 JP Richardson [https://github.com/jprichardson]





          

      

      

    

  

  
    

    fs.realpath
    

    
 
  

    
      
          
            
  
fs.realpath

A backwards-compatible fs.realpath for Node v6 and above

In Node v6, the JavaScript implementation of fs.realpath was replaced
with a faster (but less resilient) native implementation.  That raises
new and platform-specific errors and cannot handle long or excessively
symlink-looping paths.

This module handles those cases by detecting the new errors and
falling back to the JavaScript implementation.  On versions of Node
prior to v6, it has no effect.


USAGE

var rp = require('fs.realpath')

// async version
rp.realpath(someLongAndLoopingPath, function (er, real) {
  // the ELOOP was handled, but it was a bit slower
})

// sync version
var real = rp.realpathSync(someLongAndLoopingPath)

// monkeypatch at your own risk!
// This replaces the fs.realpath/fs.realpathSync builtins
rp.monkeypatch()

// un-do the monkeypatching
rp.unmonkeypatch()









          

      

      

    

  

  
    

    getpass
    

    
 
  

    
      
          
            
  
getpass

Get a password from the terminal. Sounds simple? Sounds like the readline
module should be able to do it? NOPE.



Install and use it

npm install --save getpass





const mod_getpass = require('getpass');







API


mod_getpass.getPass([options, ]callback)

Gets a password from the terminal. If available, this uses /dev/tty to avoid
interfering with any data being piped in or out of stdio.

This function prints a prompt (by default Password:) and then accepts input
without echoing.

Parameters:


	options, an Object, with properties:


	prompt, an optional String






	callback, a Func(error, password), with arguments:


	error, either null (no error) or an Error instance


	password, a String












          

      

      

    

  

  
    

    Glob
    

    
 
  

    
      
          
            
  
Glob

Match files using the patterns the shell uses, like stars and stuff.

[image: ../../_images/node-glob.svg]Build Status [https://travis-ci.org/isaacs/node-glob/] [image: ../../_images/kd7f3yftf7unxlsx.svg]Build Status [https://ci.appveyor.com/project/isaacs/node-glob] [image: ../../_images/badge10.svg]Coverage Status [https://coveralls.io/github/isaacs/node-glob?branch=master]

This is a glob implementation in JavaScript.  It uses the minimatch
library to do its matching.

[image: node_modules/glob/logo/glob.png]


Usage

Install with npm

npm i glob





var glob = require("glob")

// options is optional
glob("**/*.js", options, function (er, files) {
  // files is an array of filenames.
  // If the `nonull` option is set, and nothing
  // was found, then files is ["**/*.js"]
  // er is an error object or null.
})







Glob Primer

“Globs” are the patterns you type when you do stuff like ls *.js on
the command line, or put build/* in a .gitignore file.

Before parsing the path part patterns, braced sections are expanded
into a set.  Braced sections start with { and end with }, with any
number of comma-delimited sections within.  Braced sections may contain
slash characters, so a{/b/c,bcd} would expand into a/b/c and abcd.

The following characters have special magic meaning when used in a
path portion:


	* Matches 0 or more characters in a single path portion


	? Matches 1 character


	[...] Matches a range of characters, similar to a RegExp range.
If the first character of the range is ! or ^ then it matches
any character not in the range.


	!(pattern|pattern|pattern) Matches anything that does not match
any of the patterns provided.


	?(pattern|pattern|pattern) Matches zero or one occurrence of the
patterns provided.


	+(pattern|pattern|pattern) Matches one or more occurrences of the
patterns provided.


	*(a|b|c) Matches zero or more occurrences of the patterns provided


	@(pattern|pat*|pat?erN) Matches exactly one of the patterns
provided


	** If a “globstar” is alone in a path portion, then it matches
zero or more directories and subdirectories searching for matches.
It does not crawl symlinked directories.





Dots

If a file or directory path portion has a . as the first character,
then it will not match any glob pattern unless that pattern’s
corresponding path part also has a . as its first character.

For example, the pattern a/.*/c would match the file at a/.b/c.
However the pattern a/*/c would not, because * does not start with
a dot character.

You can make glob treat dots as normal characters by setting
dot:true in the options.



Basename Matching

If you set matchBase:true in the options, and the pattern has no
slashes in it, then it will seek for any file anywhere in the tree
with a matching basename.  For example, *.js would match
test/simple/basic.js.



Empty Sets

If no matching files are found, then an empty array is returned.  This
differs from the shell, where the pattern itself is returned.  For
example:

$ echo a*s*d*f
a*s*d*f





To get the bash-style behavior, set the nonull:true in the options.



See Also:


	man sh


	man bash (Search for “Pattern Matching”)


	man 3 fnmatch


	man 5 gitignore


	minimatch documentation [https://github.com/isaacs/minimatch]







glob.hasMagic(pattern, [options])

Returns true if there are any special characters in the pattern, and
false otherwise.

Note that the options affect the results.  If noext:true is set in
the options object, then +(a|b) will not be considered a magic
pattern.  If the pattern has a brace expansion, like a/{b/c,x/y}
then that is considered magical, unless nobrace:true is set in the
options.



glob(pattern, [options], cb)


	pattern {String} Pattern to be matched


	options {Object}


	cb {Function}


	err {Error | null}


	matches {Array<String>} filenames found matching the pattern








Perform an asynchronous glob search.



glob.sync(pattern, [options])


	pattern {String} Pattern to be matched


	options {Object}


	return: {Array<String>} filenames found matching the pattern




Perform a synchronous glob search.



Class: glob.Glob

Create a Glob object by instantiating the glob.Glob class.

var Glob = require("glob").Glob
var mg = new Glob(pattern, options, cb)





It’s an EventEmitter, and starts walking the filesystem to find matches
immediately.


new glob.Glob(pattern, [options], [cb])


	pattern {String} pattern to search for


	options {Object}


	cb {Function} Called when an error occurs, or matches are found


	err {Error | null}


	matches {Array<String>} filenames found matching the pattern








Note that if the sync flag is set in the options, then matches will
be immediately available on the g.found member.



Properties


	minimatch The minimatch object that the glob uses.


	options The options object passed in.


	aborted Boolean which is set to true when calling abort().  There
is no way at this time to continue a glob search after aborting, but
you can re-use the statCache to avoid having to duplicate syscalls.


	cache Convenience object.  Each field has the following possible
values:


	false - Path does not exist


	true - Path exists


	'FILE' - Path exists, and is not a directory


	'DIR' - Path exists, and is a directory


	[file, entries, ...] - Path exists, is a directory, and the
array value is the results of fs.readdir






	statCache Cache of fs.stat results, to prevent statting the same
path multiple times.


	symlinks A record of which paths are symbolic links, which is
relevant in resolving ** patterns.


	realpathCache An optional object which is passed to fs.realpath
to minimize unnecessary syscalls.  It is stored on the instantiated
Glob object, and may be re-used.






Events


	end When the matching is finished, this is emitted with all the
matches found.  If the nonull option is set, and no match was found,
then the matches list contains the original pattern.  The matches
are sorted, unless the nosort flag is set.


	match Every time a match is found, this is emitted with the specific
thing that matched. It is not deduplicated or resolved to a realpath.


	error Emitted when an unexpected error is encountered, or whenever
any fs error occurs if options.strict is set.


	abort When abort() is called, this event is raised.






Methods


	pause Temporarily stop the search


	resume Resume the search


	abort Stop the search forever






Options

All the options that can be passed to Minimatch can also be passed to
Glob to change pattern matching behavior.  Also, some have been added,
or have glob-specific ramifications.

All options are false by default, unless otherwise noted.

All options are added to the Glob object, as well.

If you are running many glob operations, you can pass a Glob object
as the options argument to a subsequent operation to shortcut some
stat and readdir calls.  At the very least, you may pass in shared
symlinks, statCache, realpathCache, and cache options, so that
parallel glob operations will be sped up by sharing information about
the filesystem.


	cwd The current working directory in which to search.  Defaults
to process.cwd().


	root The place where patterns starting with / will be mounted
onto.  Defaults to path.resolve(options.cwd, "/") (/ on Unix
systems, and C:\ or some such on Windows.)


	dot Include .dot files in normal matches and globstar matches.
Note that an explicit dot in a portion of the pattern will always
match dot files.


	nomount By default, a pattern starting with a forward-slash will be
“mounted” onto the root setting, so that a valid filesystem path is
returned.  Set this flag to disable that behavior.


	mark Add a / character to directory matches.  Note that this
requires additional stat calls.


	nosort Don’t sort the results.


	stat Set to true to stat all results.  This reduces performance
somewhat, and is completely unnecessary, unless readdir is presumed
to be an untrustworthy indicator of file existence.


	silent When an unusual error is encountered when attempting to
read a directory, a warning will be printed to stderr.  Set the
silent option to true to suppress these warnings.


	strict When an unusual error is encountered when attempting to
read a directory, the process will just continue on in search of
other matches.  Set the strict option to raise an error in these
cases.


	cache See cache property above.  Pass in a previously generated
cache object to save some fs calls.


	statCache A cache of results of filesystem information, to prevent
unnecessary stat calls.  While it should not normally be necessary
to set this, you may pass the statCache from one glob() call to the
options object of another, if you know that the filesystem will not
change between calls.  (See “Race Conditions” below.)


	symlinks A cache of known symbolic links.  You may pass in a
previously generated symlinks object to save lstat calls when
resolving ** matches.


	sync DEPRECATED: use glob.sync(pattern, opts) instead.


	nounique In some cases, brace-expanded patterns can result in the
same file showing up multiple times in the result set.  By default,
this implementation prevents duplicates in the result set.  Set this
flag to disable that behavior.


	nonull Set to never return an empty set, instead returning a set
containing the pattern itself.  This is the default in glob(3).


	debug Set to enable debug logging in minimatch and glob.


	nobrace Do not expand {a,b} and {1..3} brace sets.


	noglobstar Do not match ** against multiple filenames.  (Ie,
treat it as a normal * instead.)


	noext Do not match +(a|b) “extglob” patterns.


	nocase Perform a case-insensitive match.  Note: on
case-insensitive filesystems, non-magic patterns will match by
default, since stat and readdir will not raise errors.


	matchBase Perform a basename-only match if the pattern does not
contain any slash characters.  That is, *.js would be treated as
equivalent to **/*.js, matching all js files in all directories.


	nodir Do not match directories, only files.  (Note: to match
only directories, simply put a / at the end of the pattern.)


	ignore Add a pattern or an array of glob patterns to exclude matches.
Note: ignore patterns are always in dot:true mode, regardless
of any other settings.


	follow Follow symlinked directories when expanding ** patterns.
Note that this can result in a lot of duplicate references in the
presence of cyclic links.


	realpath Set to true to call fs.realpath on all of the results.
In the case of a symlink that cannot be resolved, the full absolute
path to the matched entry is returned (though it will usually be a
broken symlink)


	absolute Set to true to always receive absolute paths for matched
files.  Unlike realpath, this also affects the values returned in
the match event.







Comparisons to other fnmatch/glob implementations

While strict compliance with the existing standards is a worthwhile
goal, some discrepancies exist between node-glob and other
implementations, and are intentional.

The double-star character ** is supported by default, unless the
noglobstar flag is set.  This is supported in the manner of bsdglob
and bash 4.3, where ** only has special significance if it is the only
thing in a path part.  That is, a/**/b will match a/x/y/b, but
a/**b will not.

Note that symlinked directories are not crawled as part of a **,
though their contents may match against subsequent portions of the
pattern.  This prevents infinite loops and duplicates and the like.

If an escaped pattern has no matches, and the nonull flag is set,
then glob returns the pattern as-provided, rather than
interpreting the character escapes.  For example,
glob.match([], "\\*a\\?") will return "\\*a\\?" rather than
"*a?".  This is akin to setting the nullglob option in bash, except
that it does not resolve escaped pattern characters.

If brace expansion is not disabled, then it is performed before any
other interpretation of the glob pattern.  Thus, a pattern like
+(a|{b),c)}, which would not be valid in bash or zsh, is expanded
first into the set of +(a|b) and +(a|c), and those patterns are
checked for validity.  Since those two are valid, matching proceeds.


Comments and Negation

Previously, this module let you mark a pattern as a “comment” if it
started with a # character, or a “negated” pattern if it started
with a ! character.

These options were deprecated in version 5, and removed in version 6.

To specify things that should not match, use the ignore option.




Windows

Please only use forward-slashes in glob expressions.

Though windows uses either / or \ as its path separator, only /
characters are used by this glob implementation.  You must use
forward-slashes only in glob expressions.  Back-slashes will always
be interpreted as escape characters, not path separators.

Results from absolute patterns such as /foo/* are mounted onto the
root setting using path.join.  On windows, this will by default result
in /foo/* matching C:\foo\bar.txt.



Race Conditions

Glob searching, by its very nature, is susceptible to race conditions,
since it relies on directory walking and such.

As a result, it is possible that a file that exists when glob looks for
it may have been deleted or modified by the time it returns the result.

As part of its internal implementation, this program caches all stat
and readdir calls that it makes, in order to cut down on system
overhead.  However, this also makes it even more susceptible to races,
especially if the cache or statCache objects are reused between glob
calls.

Users are thus advised not to use a glob result as a guarantee of
filesystem state in the face of rapid changes.  For the vast majority
of operations, this is never a problem.



Glob Logo

Glob’s logo was created by Tanya Brassie [http://tanyabrassie.com/]. Logo files can be found here [https://github.com/isaacs/node-glob/tree/master/logo].

The logo is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License [https://creativecommons.org/licenses/by-sa/4.0/].



Contributing

Any change to behavior (including bugfixes) must come with a test.

Patches that fail tests or reduce performance will be rejected.

# to run tests
npm test

# to re-generate test fixtures
npm run test-regen

# to benchmark against bash/zsh
npm run bench

# to profile javascript
npm run prof





[image: node_modules/glob/oh-my-glob.gif]





          

      

      

    

  

  
    

    7.0
    

    
 
  

    
      
          
            
  
7.0


	Raise error if options.cwd is specified, and not a directory






6.0


	Remove comment and negation pattern support


	Ignore patterns are always in dot:true mode






5.0


	Deprecate comment and negation patterns


	Fix regression in mark and nodir options from making all cache
keys absolute path.


	Abort if fs.readdir returns an error that’s unexpected


	Don’t emit match events for ignored items


	Treat ENOTSUP like ENOTDIR in readdir






4.5


	Add options.follow to always follow directory symlinks in globstar


	Add options.realpath to call fs.realpath on all results


	Always cache based on absolute path






4.4


	Add options.ignore


	Fix handling of broken symlinks






4.3


	Bump minimatch to 2.x


	Pass all tests on Windows






4.2


	Add glob.hasMagic function


	Add options.nodir flag






4.1


	Refactor sync and async implementations for performance


	Throw if callback provided to sync glob function


	Treat symbolic links in globstar results the same as Bash 4.3






4.0


	Use ^ for dependency versions (bumped major because this breaks
older npm versions)


	Ensure callbacks are only ever called once


	switch to ISC license






3.x


	Rewrite in JavaScript


	Add support for setting root, cwd, and windows support


	Cache many fs calls


	Add globstar support


	emit match events






2.x


	Use glob.h and fnmatch.h from NetBSD






1.x


	glob.h static binding.







          

      

      

    

  

  
    

    graceful-fs
    

    
 
  

    
      
          
            
  
graceful-fs

graceful-fs functions as a drop-in replacement for the fs module,
making various improvements.

The improvements are meant to normalize behavior across different
platforms and environments, and to make filesystem access more
resilient to errors.


Improvements over fs module [https://nodejs.org/api/fs.html]


	Queues up open and readdir calls, and retries them once
something closes if there is an EMFILE error from too many file
descriptors.


	fixes lchmod for Node versions prior to 0.6.2.


	implements fs.lutimes if possible. Otherwise it becomes a noop.


	ignores EINVAL and EPERM errors in chown, fchown or
lchown if the user isn’t root.


	makes lchmod and lchown become noops, if not available.


	retries reading a file if read results in EAGAIN error.




On Windows, it retries renaming a file for up to one second if EACCESS
or EPERM error occurs, likely because antivirus software has locked
the directory.



USAGE

// use just like fs
var fs = require('graceful-fs')

// now go and do stuff with it...
fs.readFileSync('some-file-or-whatever')







Global Patching

If you want to patch the global fs module (or any other fs-like
module) you can do this:

// Make sure to read the caveat below.
var realFs = require('fs')
var gracefulFs = require('graceful-fs')
gracefulFs.gracefulify(realFs)





This should only ever be done at the top-level application layer, in
order to delay on EMFILE errors from any fs-using dependencies.  You
should not do this in a library, because it can cause unexpected
delays in other parts of the program.



Changes

This module is fairly stable at this point, and used by a lot of
things.  That being said, because it implements a subtle behavior
change in a core part of the node API, even modest changes can be
extremely breaking, and the versioning is thus biased towards
bumping the major when in doubt.

The main change between major versions has been switching between
providing a fully-patched fs module vs monkey-patching the node core
builtin, and the approach by which a non-monkey-patched fs was
created.

The goal is to trade EMFILE errors for slower fs operations.  So, if
you try to open a zillion files, rather than crashing, open
operations will be queued up and wait for something else to close.

There are advantages to each approach.  Monkey-patching the fs means
that no EMFILE errors can possibly occur anywhere in your
application, because everything is using the same core fs module,
which is patched.  However, it can also obviously cause undesirable
side-effects, especially if the module is loaded multiple times.

Implementing a separate-but-identical patched fs module is more
surgical (and doesn’t run the risk of patching multiple times), but
also imposes the challenge of keeping in sync with the core module.

The current approach loads the fs module, and then creates a
lookalike object that has all the same methods, except a few that are
patched.  It is safe to use in all versions of Node from 0.8 through
7.0.


v4


	Do not monkey-patch the fs module.  This module may now be used as a
drop-in dep, and users can opt into monkey-patching the fs builtin
if their app requires it.






v3


	Monkey-patch fs, because the eval approach no longer works on recent
node.


	fixed possible type-error throw if rename fails on windows


	verify that we never get EMFILE errors


	Ignore ENOSYS from chmod/chown


	clarify that graceful-fs must be used as a drop-in






v2.1.0


	Use eval rather than monkey-patching fs.


	readdir: Always sort the results


	win32: requeue a file if error has an OK status






v2.0


	A return to monkey patching


	wrap process.cwd






v1.1


	wrap readFile


	Wrap fs.writeFile.


	readdir protection


	Don’t clobber the fs builtin


	Handle fs.read EAGAIN errors by trying again


	Expose the curOpen counter


	No-op lchown/lchmod if not implemented


	fs.rename patch only for win32


	Patch fs.rename to handle AV software on Windows


	Close #4 Chown should not fail on einval or eperm if non-root


	Fix isaacs/fstream#1 Only wrap fs one time


	Fix #3 Start at 1024 max files, then back off on EMFILE


	lutimes that doens’t blow up on Linux


	A full on-rewrite using a queue instead of just swallowing the EMFILE error


	Wrap Read/Write streams as well






1.0


	Update engines for node 0.6


	Be lstat-graceful on Windows


	first









          

      

      

    

  

  
    

    graceful-readlink
    

    
 
  

    
      
          
            
  
graceful-readlink

[image: ../../_images/graceful-readlink.svg]NPM Version [https://www.npmjs.org/package/graceful-readlink]
[image: ../../_images/graceful-readlink1.svg]NPM Downloads [https://www.npmjs.org/package/graceful-readlink]


Usage

var readlinkSync = require('graceful-readlink').readlinkSync;
console.log(readlinkSync(f));
// output
//  the file pointed to when `f` is a symbolic link
//  the `f` itself when `f` is not a symbolic link







Licence

MIT License





          

      

      

    

  

  
    

    HAR Schema
    

    
 
  

    
      
          
            
  
HAR Schema [image: ../../_images/har-schema.svg]version [https://www.npmjs.com/package/har-schema] [image: ../../_images/har-schema1.svg]License [http://choosealicense.com/licenses/isc/]


JSON Schema for HTTP Archive (HAR [https://github.com/ahmadnassri/har-spec/blob/master/versions/1.2]).




[image: ../../_images/har-schema2.svg]Build Status [https://travis-ci.org/ahmadnassri/har-schema]
[image: ../../_images/har-schema3.svg]Downloads [https://www.npmjs.com/package/har-schema]
[image: https://img.shields.io/codeclimate/github/ahmadnassri/har-schema.svg?style=flat-square]Code Climate [https://codeclimate.com/github/ahmadnassri/har-schema]
[image: https://img.shields.io/codeclimate/coverage/github/ahmadnassri/har-schema.svg?style=flat-square]Coverage Status [https://codeclimate.com/github/ahmadnassri/har-schema]
[image: https://dependencyci.com/github/ahmadnassri/har-schema/badge?style=flat-square]Dependency Status [https://dependencyci.com/github/ahmadnassri/har-schema]
[image: ../../_images/har-schema4.svg]Dependencies [https://david-dm.org/ahmadnassri/har-schema]


Install

npm install --only=production --save har-schema







Usage

Compatible with any JSON Schema validation tool [https://github.com/ahmadnassri/har-validator].




:copyright: ahmadnassri.com [https://www.ahmadnassri.com/]  · 
License: ISC [http://choosealicense.com/licenses/isc/]  · 
Github: @ahmadnassri [https://github.com/ahmadnassri]  · 
Twitter: @ahmadnassri [https://twitter.com/ahmadnassri]








          

      

      

    

  

  
    

    HAR Validator
    

    
 
  

    
      
          
            
  
HAR Validator

[image: https://badgen.net/github/license/ahmadnassri/node-har-validator]license
[image: ../../_images/har-validator.svg]version [https://www.npmjs.com/package/har-validator]
[image: ../../_images/badge11.svg]super linter [https://github.com/ahmadnassri/node-har-validator/actions?query=workflow%3Asuper-linter]
[image: ../../_images/badge12.svg]test [https://github.com/ahmadnassri/node-har-validator/actions?query=workflow%3Atest]
[image: https://github.com/ahmadnassri/node-har-validator/workflows/release/badge.svg]release [https://github.com/ahmadnassri/node-har-validator/actions?query=workflow%3Arelease]


Extremely fast HTTP Archive (HAR [https://github.com/ahmadnassri/har-spec/blob/master/versions/1.2]) validator using JSON Schema.





Install

npm install har-validator







CLI Usage

Please refer to har-cli [https://github.com/ahmadnassri/har-cli] for more info.



API

Note: as of v2.0.0 [https://github.com/ahmadnassri/node-har-validator/releases/tag/v2.0.0] this module defaults to Promise based API.
For backward compatibility with v1.x an async/callback API is also provided


	async API


	callback API


	Promise API (default)








          

      

      

    

  

  
    

    2018-03-29 / 1.6.3
    

    
 
  

    
      
          
            
  
2018-03-29 / 1.6.3


	deps: depd@~1.1.2


	perf: remove argument reassignment






	deps: setprototypeof@1.1.0


	deps: statuses@’>= 1.3.1 < 2’






2017-08-04 / 1.6.2


	deps: depd@1.1.1


	Remove unnecessary Buffer loading










2017-02-20 / 1.6.1


	deps: setprototypeof@1.0.3


	Fix shim for old browsers










2017-02-14 / 1.6.0


	Accept custom 4xx and 5xx status codes in factory


	Add deprecation message to "I'mateapot" export


	Deprecate passing status code as anything except first argument in factory


	Deprecate using non-error status codes


	Make message property enumerable for HttpErrors






2016-11-16 / 1.5.1


	deps: inherits@2.0.3


	Fix issue loading in browser






	deps: setprototypeof@1.0.2


	deps: statuses@’>= 1.3.1 < 2’






2016-05-18 / 1.5.0


	Support new code 421 Misdirected Request


	Use setprototypeof module to replace __proto__ setting


	deps: statuses@’>= 1.3.0 < 2’


	Add 421 Misdirected Request


	perf: enable strict mode






	perf: enable strict mode






2016-01-28 / 1.4.0


	Add HttpError export, for err instanceof createError.HttpError


	deps: inherits@2.0.1


	deps: statuses@’>= 1.2.1 < 2’


	Fix message for status 451


	Remove incorrect nginx status code










2015-02-02 / 1.3.1


	Fix regression where status can be overwritten in createError props






2015-02-01 / 1.3.0


	Construct errors using defined constructors from createError


	Fix error names that are not identifiers


	createError["I'mateapot"] is now createError.ImATeapot






	Set a meaningful name property on constructed errors






2014-12-09 / 1.2.8


	Fix stack trace from exported function


	Remove arguments.callee usage






2014-10-14 / 1.2.7


	Remove duplicate line






2014-10-02 / 1.2.6


	Fix expose to be true for ClientError constructor






2014-09-28 / 1.2.5


	deps: statuses@1






2014-09-21 / 1.2.4


	Fix dependency version to work with old npms






2014-09-21 / 1.2.3


	deps: statuses@~1.1.0






2014-09-21 / 1.2.2


	Fix publish error






2014-09-21 / 1.2.1


	Support Node.js 0.6


	Use inherits instead of util






2014-09-09 / 1.2.0


	Fix the way inheriting functions


	Support expose being provided in properties argument






2014-09-08 / 1.1.0


	Default status to 500


	Support provided error to extend






2014-09-08 / 1.0.1


	Fix accepting string message






2014-09-08 / 1.0.0


	Initial release







          

      

      

    

  

  
    

    http-errors
    

    
 
  

    
      
          
            
  
http-errors

[image: ../../_images/http-errors3.svg]NPM Version [https://npmjs.org/package/http-errors]
[image: ../../_images/http-errors4.svg]NPM Downloads [https://npmjs.org/package/http-errors]
[image: ../../_images/http-errors5.svg]Node.js Version [https://nodejs.org/en/download/]
[image: ../../_images/http-errors6.svg]Build Status [https://travis-ci.org/jshttp/http-errors]
[image: ../../_images/http-errors7.svg]Test Coverage [https://coveralls.io/r/jshttp/http-errors]

Create HTTP errors for Express, Koa, Connect, etc. with ease.


Install

This is a Node.js [https://nodejs.org/en/] module available through the
npm registry [https://www.npmjs.com/]. Installation is done using the
npm install command [https://docs.npmjs.com/getting-started/installing-npm-packages-locally]:

$ npm install http-errors







Example

var createError = require('http-errors')
var express = require('express')
var app = express()

app.use(function (req, res, next) {
  if (!req.user) return next(createError(401, 'Please login to view this page.'))
  next()
})







API

This is the current API, currently extracted from Koa and subject to change.

All errors inherit from JavaScript Error and the exported createError.HttpError.


Error Properties


	expose - can be used to signal if message should be sent to the client,
defaulting to false when status >= 500


	headers - can be an object of header names to values to be sent to the
client, defaulting to undefined. When defined, the key names should all
be lower-cased


	message - the traditional error message, which should be kept short and all
single line


	status - the status code of the error, mirroring statusCode for general
compatibility


	statusCode - the status code of the error, defaulting to 500






createError([status], [message], [properties])

var err = createError(404, 'This video does not exist!')






	status: 500 - the status code as a number


	message - the message of the error, defaulting to node’s text for that status code.


	properties - custom properties to attach to the object






new createError[code || name]([msg]))

var err = new createError.NotFound()






	code - the status code as a number


	name - the name of the error as a “bumpy case”, i.e. NotFound or InternalServerError.





List of all constructors

|Status Code|Constructor Name             |
|———–|—————————–|
|400        |BadRequest                   |
|401        |Unauthorized                 |
|402        |PaymentRequired              |
|403        |Forbidden                    |
|404        |NotFound                     |
|405        |MethodNotAllowed             |
|406        |NotAcceptable                |
|407        |ProxyAuthenticationRequired  |
|408        |RequestTimeout               |
|409        |Conflict                     |
|410        |Gone                         |
|411        |LengthRequired               |
|412        |PreconditionFailed           |
|413        |PayloadTooLarge              |
|414        |URITooLong                   |
|415        |UnsupportedMediaType         |
|416        |RangeNotSatisfiable          |
|417        |ExpectationFailed            |
|418        |ImATeapot                    |
|421        |MisdirectedRequest           |
|422        |UnprocessableEntity          |
|423        |Locked                       |
|424        |FailedDependency             |
|425        |UnorderedCollection          |
|426        |UpgradeRequired              |
|428        |PreconditionRequired         |
|429        |TooManyRequests              |
|431        |RequestHeaderFieldsTooLarge  |
|451        |UnavailableForLegalReasons   |
|500        |InternalServerError          |
|501        |NotImplemented               |
|502        |BadGateway                   |
|503        |ServiceUnavailable           |
|504        |GatewayTimeout               |
|505        |HTTPVersionNotSupported      |
|506        |VariantAlsoNegotiates        |
|507        |InsufficientStorage          |
|508        |LoopDetected                 |
|509        |BandwidthLimitExceeded       |
|510        |NotExtended                  |
|511        |NetworkAuthenticationRequired|





License

MIT





          

      

      

    

  

  
    

    node-http-signature changelog
    

    
 
  

    
      
          
            
  
node-http-signature changelog


1.1.1


	Version of dependency assert-plus updated: old version was missing
some license information


	Corrected examples in http_signing.md, added auto-tests to
automatically validate these examples






1.1.0


	Bump version of sshpk dependency, remove peerDependency on it since
it now supports exchanging objects between multiple versions of itself
where possible






1.0.2


	Bump min version of jsprim dependency, to include fixes for using
http-signature with browserify






1.0.1


	Bump minimum version of sshpk dependency, to include fixes for
whitespace tolerance in key parsing.






1.0.0


	First semver release.


	#36: Ensure verifySignature does not leak useful timing information


	#42: Bring the library up to the latest version of the spec (including the
request-target changes)


	Support for ECDSA keys and signatures.


	Now uses sshpk for key parsing, validation and conversion.


	Fixes for #21, #47, #39 and compatibility with node 0.8






0.11.0


	Split up HMAC and Signature verification to avoid vulnerabilities where a
key intended for use with one can be validated against the other method
instead.






0.10.2


	Updated versions of most dependencies.


	Utility functions exported for PEM => SSH-RSA conversion.


	Improvements to tests and examples.








          

      

      

    

  

  
    

    node-http-signature
    

    
 
  

    
      
          
            
  
node-http-signature

node-http-signature is a node.js library that has client and server components
for Joyent’s HTTP Signature Scheme.


Usage

Note the example below signs a request with the same key/cert used to start an
HTTP server. This is almost certainly not what you actually want, but is just
used to illustrate the API calls; you will need to provide your own key
management in addition to this library.


Client

var fs = require('fs');
var https = require('https');
var httpSignature = require('http-signature');

var key = fs.readFileSync('./key.pem', 'ascii');

var options = {
  host: 'localhost',
  port: 8443,
  path: '/',
  method: 'GET',
  headers: {}
};

// Adds a 'Date' header in, signs it, and adds the
// 'Authorization' header in.
var req = https.request(options, function(res) {
  console.log(res.statusCode);
});


httpSignature.sign(req, {
  key: key,
  keyId: './cert.pem'
});

req.end();







Server

var fs = require('fs');
var https = require('https');
var httpSignature = require('http-signature');

var options = {
  key: fs.readFileSync('./key.pem'),
  cert: fs.readFileSync('./cert.pem')
};

https.createServer(options, function (req, res) {
  var rc = 200;
  var parsed = httpSignature.parseRequest(req);
  var pub = fs.readFileSync(parsed.keyId, 'ascii');
  if (!httpSignature.verifySignature(parsed, pub))
    rc = 401;

  res.writeHead(rc);
  res.end();
}).listen(8443);








Installation

npm install http-signature







License

MIT.



Bugs

See https://github.com/joyent/node-http-signature/issues.





          

      

      

    

  

  
    

    Abstract
    

    
 
  

    
      
          
            
  
Abstract

This document describes a way to add origin authentication, message integrity,
and replay resistance to HTTP REST requests.  It is intended to be used over
the HTTPS protocol.



Copyright Notice

Copyright (c) 2011 Joyent, Inc. and the persons identified as document authors.
All rights reserved.

Code Components extracted from this document must include MIT License text.



Introduction

This protocol is intended to provide a standard way for clients to sign HTTP
requests.  RFC2617 (HTTP Authentication) defines Basic and Digest authentication
mechanisms, and RFC5246 (TLS 1.2) defines client-auth, both of which are widely
employed on the Internet today.  However, it is common place that the burdens of
PKI prevent web service operators from deploying that methodology, and so many
fall back to Basic authentication, which has poor security characteristics.

Additionally, OAuth provides a fully-specified alternative for authorization
of web service requests, but is not (always) ideal for machine to machine
communication, as the key acquisition steps (generally) imply a fixed
infrastructure that may not make sense to a service provider (e.g., symmetric
keys).

Several web service providers have invented their own schemes for signing
HTTP requests, but to date, none have been placed in the public domain as a
standard.  This document serves that purpose.  There are no techniques in this
proposal that are novel beyond previous art, however, this aims to be a simple
mechanism for signing these requests.



Signature Authentication Scheme

The “signature” authentication scheme is based on the model that the client must
authenticate itself with a digital signature produced by either a private
asymmetric key (e.g., RSA) or a shared symmetric key (e.g., HMAC).  The scheme
is parameterized enough such that it is not bound to any particular key type or
signing algorithm.  However, it does explicitly assume that clients can send an
HTTP Date header.


Authorization Header

The client is expected to send an Authorization header (as defined in RFC 2617)
with the following parameterization:

credentials := "Signature" params
params := 1#(keyId | algorithm | [headers] | [ext] | signature)
digitalSignature := plain-string

keyId := "keyId" "=" <"> plain-string <">
algorithm := "algorithm" "=" <"> plain-string <">
headers := "headers" "=" <"> 1#headers-value <">
ext := "ext" "=" <"> plain-string <">
signature := "signature" "=" <"> plain-string <">

headers-value := plain-string
plain-string   = 1*( %x20-21 / %x23-5B / %x5D-7E )






Signature Parameters


keyId

REQUIRED.  The keyId field is an opaque string that the server can use to look
up the component they need to validate the signature.  It could be an SSH key
fingerprint, an LDAP DN, etc.  Management of keys and assignment of keyId is
out of scope for this document.



algorithm

REQUIRED. The algorithm parameter is used if the client and server agree on a
non-standard digital signature algorithm.  The full list of supported signature
mechanisms is listed below.



headers

OPTIONAL.  The headers parameter is used to specify the list of HTTP headers
used to sign the request.  If specified, it should be a quoted list of HTTP
header names, separated by a single space character.  By default, only one
HTTP header is signed, which is the Date header.  Note that the list MUST be
specified in the order the values are concatenated together during signing. To
include the HTTP request line in the signature calculation, use the special
request-line value.  While this is overloading the definition of headers in
HTTP linguism, the request-line is defined in RFC 2616, and as the outlier from
headers in useful signature calculation, it is deemed simpler to simply use
request-line than to add a separate parameter for it.



extensions

OPTIONAL.  The extensions parameter is used to include additional information
which is covered by the request.  The content and format of the string is out of
scope for this document, and expected to be specified by implementors.



signature

REQUIRED.  The signature parameter is a Base64 encoded digital signature
generated by the client. The client uses the algorithm and headers request
parameters to form a canonicalized signing string.  This signing string is
then signed with the key associated with keyId and the algorithm
corresponding to algorithm.  The signature parameter is then set to the
Base64 encoding of the signature.




Signing String Composition

In order to generate the string that is signed with a key, the client MUST take
the values of each HTTP header specified by headers in the order they appear.


	If the header name is not request-line then append the lowercased header
name followed with an ASCII colon : and an ASCII space  .


	If the header name is request-line then append the HTTP request line,
otherwise append the header value.


	If value is not the last value then append an ASCII newline \n. The string
MUST NOT include a trailing ASCII newline.








Example Requests

All requests refer to the following request (body omitted):

POST /foo HTTP/1.1
Host: example.org
Date: Tue, 07 Jun 2014 20:51:35 GMT
Content-Type: application/json
Digest: SHA-256=X48E9qOokqqrvdts8nOJRJN3OWDUoyWxBf7kbu9DBPE=
Content-Length: 18





The “rsa-key-1” keyId refers to a private key known to the client and a public
key known to the server. The “hmac-key-1” keyId refers to key known to the
client and server.


Default parameterization

The authorization header and signature would be generated as:

Authorization: Signature keyId="rsa-key-1",algorithm="rsa-sha256",signature="Base64(RSA-SHA256(signing string))"





The client would compose the signing string as:

date: Tue, 07 Jun 2014 20:51:35 GMT







Header List

The authorization header and signature would be generated as:

Authorization: Signature keyId="rsa-key-1",algorithm="rsa-sha256",headers="(request-target) date content-type digest",signature="Base64(RSA-SHA256(signing string))"





The client would compose the signing string as (+ "\n" inserted for
readability):

(request-target) post /foo + "\n"
date: Tue, 07 Jun 2011 20:51:35 GMT + "\n"
content-type: application/json + "\n"
digest: SHA-256=Base64(SHA256(Body))







Algorithm

The authorization header and signature would be generated as:

Authorization: Signature keyId="hmac-key-1",algorithm="hmac-sha1",signature="Base64(HMAC-SHA1(signing string))"





The client would compose the signing string as:

date: Tue, 07 Jun 2011 20:51:35 GMT








Signing Algorithms

Currently supported algorithm names are:


	rsa-sha1


	rsa-sha256


	rsa-sha512


	dsa-sha1


	hmac-sha1


	hmac-sha256


	hmac-sha512






Security Considerations


Default Parameters

Note the default parameterization of the Signature scheme is only safe if all
requests are carried over a secure transport (i.e., TLS).  Sending the default
scheme over a non-secure transport will leave the request vulnerable to
spoofing, tampering, replay/repudiation, and integrity violations (if using the
STRIDE threat-modeling methodology).



Insecure Transports

If sending the request over plain HTTP, service providers SHOULD require clients
to sign ALL HTTP headers, and the request-line.  Additionally, service
providers SHOULD require Content-MD5 calculations to be performed to ensure
against any tampering from clients.



Nonces

Nonces are out of scope for this document simply because many service providers
fail to implement them correctly, or do not adopt security specifications
because of the infrastructure complexity.  Given the header parameterization,
a service provider is fully enabled to add nonce semantics into this scheme by
using something like an x-request-nonce header, and ensuring it is signed
with the Date header.



Clock Skew

As the default scheme is to sign the Date header, service providers SHOULD
protect against logged replay attacks by enforcing a clock skew.  The server
SHOULD be synchronized with NTP, and the recommendation in this specification
is to allow 300s of clock skew (in either direction).



Required Headers to Sign

It is out of scope for this document to dictate what headers a service provider
will want to enforce, but service providers SHOULD at minimum include the
Date header.




References


Normative References


	[RFC2616] Hypertext Transfer Protocol – HTTP/1.1


	[RFC2617] HTTP Authentication: Basic and Digest Access Authentication


	[RFC5246] The Transport Layer Security (TLS) Protocol Version 1.2






Informative References

Name: Mark Cavage (editor)
Company: Joyent, Inc.
Email: mark.cavage@joyent.com
URI: http://www.joyent.com








Appendix A - Test Values

The following test data uses the RSA (1024b) keys, which we will refer
to as keyId=Test in the following samples:

-----BEGIN PUBLIC KEY-----
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDCFENGw33yGihy92pDjZQhl0C3
6rPJj+CvfSC8+q28hxA161QFNUd13wuCTUcq0Qd2qsBe/2hFyc2DCJJg0h1L78+6
Z4UMR7EOcpfdUE9Hf3m/hs+FUR45uBJeDK1HSFHD8bHKD6kv8FPGfJTotc+2xjJw
oYi+1hqp1fIekaxsyQIDAQAB
-----END PUBLIC KEY-----

-----BEGIN RSA PRIVATE KEY-----
MIICXgIBAAKBgQDCFENGw33yGihy92pDjZQhl0C36rPJj+CvfSC8+q28hxA161QF
NUd13wuCTUcq0Qd2qsBe/2hFyc2DCJJg0h1L78+6Z4UMR7EOcpfdUE9Hf3m/hs+F
UR45uBJeDK1HSFHD8bHKD6kv8FPGfJTotc+2xjJwoYi+1hqp1fIekaxsyQIDAQAB
AoGBAJR8ZkCUvx5kzv+utdl7T5MnordT1TvoXXJGXK7ZZ+UuvMNUCdN2QPc4sBiA
QWvLw1cSKt5DsKZ8UETpYPy8pPYnnDEz2dDYiaew9+xEpubyeW2oH4Zx71wqBtOK
kqwrXa/pzdpiucRRjk6vE6YY7EBBs/g7uanVpGibOVAEsqH1AkEA7DkjVH28WDUg
f1nqvfn2Kj6CT7nIcE3jGJsZZ7zlZmBmHFDONMLUrXR/Zm3pR5m0tCmBqa5RK95u
412jt1dPIwJBANJT3v8pnkth48bQo/fKel6uEYyboRtA5/uHuHkZ6FQF7OUkGogc
mSJluOdc5t6hI1VsLn0QZEjQZMEOWr+wKSMCQQCC4kXJEsHAve77oP6HtG/IiEn7
kpyUXRNvFsDE0czpJJBvL/aRFUJxuRK91jhjC68sA7NsKMGg5OXb5I5Jj36xAkEA
gIT7aFOYBFwGgQAQkWNKLvySgKbAZRTeLBacpHMuQdl1DfdntvAyqpAZ0lY0RKmW
G6aFKaqQfOXKCyWoUiVknQJAXrlgySFci/2ueKlIE1QqIiLSZ8V8OlpFLRnb1pzI
7U1yQXnTAEFYM560yJlzUpOb1V4cScGd365tiSMvxLOvTA==
-----END RSA PRIVATE KEY-----





And all examples use this request:

POST /foo?param=value&pet=dog HTTP/1.1
Host: example.com
Date: Thu, 05 Jan 2014 21:31:40 GMT
Content-Type: application/json
Digest: SHA-256=X48E9qOokqqrvdts8nOJRJN3OWDUoyWxBf7kbu9DBPE=
Content-Length: 18

{"hello": "world"}






Default

The string to sign would be:

date: Thu, 05 Jan 2014 21:31:40 GMT





The Authorization header would be:

Authorization: Signature keyId="Test",algorithm="rsa-sha256",headers="date",signature="jKyvPcxB4JbmYY4mByyBY7cZfNl4OW9HpFQlG7N4YcJPteKTu4MWCLyk+gIr0wDgqtLWf9NLpMAMimdfsH7FSWGfbMFSrsVTHNTk0rK3usrfFnti1dxsM4jl0kYJCKTGI/UWkqiaxwNiKqGcdlEDrTcUhhsFsOIo8VhddmZTZ8w="







All Headers

Parameterized to include all headers, the string to sign would be (+ "\n"
inserted for readability):

(request-target): post /foo?param=value&pet=dog
host: example.com
date: Thu, 05 Jan 2014 21:31:40 GMT
content-type: application/json
digest: SHA-256=X48E9qOokqqrvdts8nOJRJN3OWDUoyWxBf7kbu9DBPE=
content-length: 18





The Authorization header would be:

Authorization: Signature keyId="Test",algorithm="rsa-sha256",headers="(request-target) host date content-type digest content-length",signature="Ef7MlxLXoBovhil3AlyjtBwAL9g4TN3tibLj7uuNB3CROat/9KaeQ4hW2NiJ+pZ6HQEOx9vYZAyi+7cmIkmJszJCut5kQLAwuX+Ms/mUFvpKlSo9StS2bMXDBNjOh4Auj774GFj4gwjS+3NhFeoqyr/MuN6HsEnkvn6zdgfE2i0="







Generating and verifying signatures using openssl

The openssl commandline tool can be used to generate or verify the signatures listed above.

Compose the signing string as usual, and pipe it into the the openssl dgst command, then into openssl enc -base64, as follows:

$ printf 'date: Thu, 05 Jan 2014 21:31:40 GMT' | \
  openssl dgst -binary -sign /path/to/private.pem -sha256 | \
  openssl enc -base64
jKyvPcxB4JbmYY4mByyBY7cZfNl4OW9Hp...
$





The -sha256 option is necessary to produce an rsa-sha256 signature. You can select other hash algorithms such as sha1 by changing this argument.

To verify a signature, first save the signature data, Base64-decoded, into a file, then use openssl dgst again with the -verify option:

$ echo 'jKyvPcxB4JbmYY4mByy...' | openssl enc -A -d -base64 > signature
$ printf 'date: Thu, 05 Jan 2014 21:31:40 GMT' | \
  openssl dgst -sha256 -verify /path/to/public.pem -signature ./signature
Verified OK
$







Generating and verifying signatures using sshpk-sign

You can also generate and check signatures using the sshpk-sign tool which is
included with the sshpk package in npm.

Compose the signing string as above, and pipe it into sshpk-sign as follows:

$ printf 'date: Thu, 05 Jan 2014 21:31:40 GMT' | \
  sshpk-sign -i /path/to/private.pem
jKyvPcxB4JbmYY4mByyBY7cZfNl4OW9Hp...
$





This will produce an rsa-sha256 signature by default, as you can see using
the -v option:

sshpk-sign: using rsa-sha256 with a 1024 bit key





You can also use sshpk-verify in a similar manner:

$ printf 'date: Thu, 05 Jan 2014 21:31:40 GMT' | \
  sshpk-verify -i ./public.pem -s 'jKyvPcxB4JbmYY...'
OK
$









          

      

      

    

  

  
    

    0.4.24 / 2018-08-22
    

    
 
  

    
      
          
            
  
0.4.24 / 2018-08-22


	Added MIK encoding (#196, by @Ivan-Kalatchev)






0.4.23 / 2018-05-07


	Fix deprecation warning in Node v10 due to the last usage of new Buffer (#185, by @felixbuenemann)


	Switched from NodeBuffer to Buffer in typings (#155 by @felixfbecker, #186 by @larssn)






0.4.22 / 2018-05-05


	Use older semver style for dependencies to be compatible with Node version 0.10 (#182, by @dougwilson)


	Fix tests to accomodate fixes in Node v10 (#182, by @dougwilson)






0.4.21 / 2018-04-06


	Fix encoding canonicalization (#156)


	Fix the paths in the “browser” field in package.json (#174 by @LMLB)


	Removed “contributors” section in package.json - see Git history instead.






0.4.20 / 2018-04-06


	Updated new Buffer() usages with recommended replacements as it’s being deprecated in Node v10 (#176, #178 by @ChALkeR)






0.4.19 / 2017-09-09


	Fixed iso8859-1 codec regression in handling untranslatable characters (#162, caused by #147)


	Re-generated windows1255 codec, because it was updated in iconv project


	Fixed grammar in error message when iconv-lite is loaded with encoding other than utf8






0.4.18 / 2017-06-13


	Fixed CESU-8 regression in Node v8.






0.4.17 / 2017-04-22


	Updated typescript definition file to support Angular 2 AoT mode (#153 by @larssn)






0.4.16 / 2017-04-22


	Added support for React Native (#150)


	Changed iso8859-1 encoding to usine internal ‘binary’ encoding, as it’s the same thing (#147 by @mscdex)


	Fixed typo in Readme (#138 by @jiangzhuo)


	Fixed build for Node v6.10+ by making correct version comparison


	Added a warning if iconv-lite is loaded not as utf-8 (see #142)






0.4.15 / 2016-11-21


	Fixed typescript type definition (#137)






0.4.14 / 2016-11-20


	Preparation for v1.0


	Added Node v6 and latest Node versions to Travis CI test rig


	Deprecated Node v0.8 support


	Typescript typings (@larssn)


	Fix encoding of Euro character in GB 18030 (inspired by @lygstate)


	Add ms prefix to dbcs windows encodings (@rokoroku)






0.4.13 / 2015-10-01


	Fix silly mistake in deprecation notice.






0.4.12 / 2015-09-26


	Node v4 support:


	Added CESU-8 decoding (#106)


	Added deprecation notice for extendNodeEncodings


	Added Travis tests for Node v4 and io.js latest (#105 by @Mithgol)










0.4.11 / 2015-07-03


	Added CESU-8 encoding.






0.4.10 / 2015-05-26


	Changed UTF-16 endianness heuristic to take into account any ASCII chars, not
just spaces. This should minimize the importance of “default” endianness.






0.4.9 / 2015-05-24


	Streamlined BOM handling: strip BOM by default, add BOM when encoding if
addBOM: true. Added docs to Readme.


	UTF16 now uses UTF16-LE by default.


	Fixed minor issue with big5 encoding.


	Added io.js testing on Travis; updated node-iconv version to test against.
Now we just skip testing SBCS encodings that node-iconv doesn’t support.


	(internal refactoring) Updated codec interface to use classes.


	Use strict mode in all files.






0.4.8 / 2015-04-14


	added alias UNICODE-1-1-UTF-7 for UTF-7 encoding (#94)






0.4.7 / 2015-02-05


	stop official support of Node.js v0.8. Should still work, but no guarantees.
reason: Packages needed for testing are hard to get on Travis CI.


	work in environment where Object.prototype is monkey patched with enumerable
props (#89).






0.4.6 / 2015-01-12


	fix rare aliases of single-byte encodings (thanks @mscdex)


	double the timeout for dbcs tests to make them less flaky on travis






0.4.5 / 2014-11-20


	fix windows-31j and x-sjis encoding support (@nleush)


	minor fix: undefined variable reference when internal error happens






0.4.4 / 2014-07-16


	added encodings UTF-7 (RFC2152) and UTF-7-IMAP (RFC3501 Section 5.1.3)


	fixed streaming base64 encoding






0.4.3 / 2014-06-14


	added encodings UTF-16BE and UTF-16 with BOM






0.4.2 / 2014-06-12


	don’t throw exception if extendNodeEncodings() is called more than once






0.4.1 / 2014-06-11


	codepage 808 added






0.4.0 / 2014-06-10


	code is rewritten from scratch


	all widespread encodings are supported


	streaming interface added


	browserify compatibility added


	(optional) extend core primitive encodings to make usage even simpler


	moved from vows to mocha as the testing framework







          

      

      

    

  

  
    

    Pure JS character encoding conversion
    

    
 
  

    
      
          
            
  
Pure JS character encoding conversion [image: ../../_images/iconv-lite.svg]Build Status [https://travis-ci.org/ashtuchkin/iconv-lite]


	Doesn’t need native code compilation. Works on Windows and in sandboxed environments like Cloud9 [http://c9.io].


	Used in popular projects like Express.js (body_parser) [https://github.com/expressjs/body-parser],
Grunt [http://gruntjs.com/], Nodemailer [http://www.nodemailer.com/], Yeoman [http://yeoman.io/] and others.


	Faster than node-iconv [https://github.com/bnoordhuis/node-iconv] (see below for performance comparison).


	Intuitive encode/decode API


	Streaming support for Node v0.10+


	[Deprecated] Can extend Node.js primitives (buffers, streams) to support all iconv-lite encodings.


	In-browser usage via Browserify [https://github.com/substack/node-browserify] (~180k gzip compressed with Buffer shim included).


	Typescript type definition file [https://github.com/ashtuchkin/iconv-lite/blob/master/lib/index.d.ts] included.


	React Native is supported (need to explicitly npm install two more modules: buffer and stream).


	License: MIT.




[image: ../../_images/iconv-lite.png]NPM Stats [https://npmjs.org/packages/iconv-lite/]



Usage


Basic API

var iconv = require('iconv-lite');

// Convert from an encoded buffer to js string.
str = iconv.decode(Buffer.from([0x68, 0x65, 0x6c, 0x6c, 0x6f]), 'win1251');

// Convert from js string to an encoded buffer.
buf = iconv.encode("Sample input string", 'win1251');

// Check if encoding is supported
iconv.encodingExists("us-ascii")







Streaming API (Node v0.10+)

// Decode stream (from binary stream to js strings)
http.createServer(function(req, res) {
    var converterStream = iconv.decodeStream('win1251');
    req.pipe(converterStream);

    converterStream.on('data', function(str) {
        console.log(str); // Do something with decoded strings, chunk-by-chunk.
    });
});

// Convert encoding streaming example
fs.createReadStream('file-in-win1251.txt')
    .pipe(iconv.decodeStream('win1251'))
    .pipe(iconv.encodeStream('ucs2'))
    .pipe(fs.createWriteStream('file-in-ucs2.txt'));

// Sugar: all encode/decode streams have .collect(cb) method to accumulate data.
http.createServer(function(req, res) {
    req.pipe(iconv.decodeStream('win1251')).collect(function(err, body) {
        assert(typeof body == 'string');
        console.log(body); // full request body string
    });
});







[Deprecated] Extend Node.js own encodings


NOTE: This doesn’t work on latest Node versions. See details [https://github.com/ashtuchkin/iconv-lite/wiki/Node-v4-compatibility].




// After this call all Node basic primitives will understand iconv-lite encodings.
iconv.extendNodeEncodings();

// Examples:
buf = new Buffer(str, 'win1251');
buf.write(str, 'gbk');
str = buf.toString('latin1');
assert(Buffer.isEncoding('iso-8859-15'));
Buffer.byteLength(str, 'us-ascii');

http.createServer(function(req, res) {
    req.setEncoding('big5');
    req.collect(function(err, body) {
        console.log(body);
    });
});

fs.createReadStream("file.txt", "shift_jis");

// External modules are also supported (if they use Node primitives, which they probably do).
request = require('request');
request({
    url: "http://github.com/", 
    encoding: "cp932"
});

// To remove extensions
iconv.undoExtendNodeEncodings();








Supported encodings


	All node.js native encodings: utf8, ucs2 / utf16-le, ascii, binary, base64, hex.


	Additional unicode encodings: utf16, utf16-be, utf-7, utf-7-imap.


	All widespread singlebyte encodings: Windows 125x family, ISO-8859 family,
IBM/DOS codepages, Macintosh family, KOI8 family, all others supported by iconv library.
Aliases like ‘latin1’, ‘us-ascii’ also supported.


	All widespread multibyte encodings: CP932, CP936, CP949, CP950, GB2312, GBK, GB18030, Big5, Shift_JIS, EUC-JP.




See all supported encodings on wiki [https://github.com/ashtuchkin/iconv-lite/wiki/Supported-Encodings].

Most singlebyte encodings are generated automatically from node-iconv [https://github.com/bnoordhuis/node-iconv]. Thank you Ben Noordhuis and libiconv authors!

Multibyte encodings are generated from Unicode.org mappings [http://www.unicode.org/Public/MAPPINGS/] and WHATWG Encoding Standard mappings [http://encoding.spec.whatwg.org/]. Thank you, respective authors!



Encoding/decoding speed

Comparison with node-iconv module (1000x256kb, on MacBook Pro, Core i5/2.6 GHz, Node v0.12.0).
Note: your results may vary, so please always check on your hardware.

operation             iconv@2.1.4   iconv-lite@0.4.7
----------------------------------------------------------
encode('win1251')     ~96 Mb/s      ~320 Mb/s
decode('win1251')     ~95 Mb/s      ~246 Mb/s







BOM handling


	Decoding: BOM is stripped by default, unless overridden by passing stripBOM: false in options
(f.ex. iconv.decode(buf, enc, {stripBOM: false})).
A callback might also be given as a stripBOM parameter - it’ll be called if BOM character was actually found.


	If you want to detect UTF-8 BOM when decoding other encodings, use node-autodetect-decoder-stream [https://github.com/danielgindi/node-autodetect-decoder-stream] module.


	Encoding: No BOM added, unless overridden by addBOM: true option.






UTF-16 Encodings

This library supports UTF-16LE, UTF-16BE and UTF-16 encodings. First two are straightforward, but UTF-16 is trying to be
smart about endianness in the following ways:


	Decoding: uses BOM and ‘spaces heuristic’ to determine input endianness. Default is UTF-16LE, but can be
overridden with defaultEncoding: 'utf-16be' option. Strips BOM unless stripBOM: false.


	Encoding: uses UTF-16LE and writes BOM by default. Use addBOM: false to override.






Other notes

When decoding, be sure to supply a Buffer to decode() method, otherwise bad things usually happen [https://github.com/ashtuchkin/iconv-lite/wiki/Use-Buffers-when-decoding].Untranslatable characters are set to � or ?. No transliteration is currently supported.Node versions 0.10.31 and 0.11.13 are buggy, don’t use them (see #65, #77).



Testing

$ git clone git@github.com:ashtuchkin/iconv-lite.git
$ cd iconv-lite
$ npm install
$ npm test
    
$ # To view performance:
$ node test/performance.js

$ # To view test coverage:
$ npm run coverage
$ open coverage/lcov-report/index.html








          

      

      

    

  

  
    

    inflight
    

    
 
  

    
      
          
            
  
inflight

Add callbacks to requests in flight to avoid async duplication


USAGE

var inflight = require('inflight')

// some request that does some stuff
function req(key, callback) {
  // key is any random string.  like a url or filename or whatever.
  //
  // will return either a falsey value, indicating that the
  // request for this key is already in flight, or a new callback
  // which when called will call all callbacks passed to inflightk
  // with the same key
  callback = inflight(key, callback)

  // If we got a falsey value back, then there's already a req going
  if (!callback) return

  // this is where you'd fetch the url or whatever
  // callback is also once()-ified, so it can safely be assigned
  // to multiple events etc.  First call wins.
  setTimeout(function() {
    callback(null, key)
  }, 100)
}

// only assigns a single setTimeout
// when it dings, all cbs get called
req('foo', cb1)
req('foo', cb2)
req('foo', cb3)
req('foo', cb4)









          

      

      

    

  

  
    

    usage
    

    
 
  

    
      
          
            
  Browser-friendly inheritance fully compatible with standard node.js
inherits [http://nodejs.org/api/util.html#util_util_inherits_constructor_superconstructor].

This package exports standard inherits from node.js util module in
node environment, but also provides alternative browser-friendly
implementation through browser
field [https://gist.github.com/shtylman/4339901]. Alternative
implementation is a literal copy of standard one located in standalone
module to avoid requiring of util. It also has a shim for old
browsers with no Object.create support.

While keeping you sure you are using standard inherits
implementation in node.js environment, it allows bundlers such as
browserify [https://github.com/substack/node-browserify] to not
include full util package to your client code if all you need is
just inherits function. It worth, because browser shim for util
package is large and inherits is often the single function you need
from it.

It’s recommended to use this package instead of
require('util').inherits for any code that has chances to be used
not only in node.js but in browser too.


usage

var inherits = require('inherits');
// then use exactly as the standard one







note on version ~1.0

Version ~1.0 had completely different motivation and is not compatible
neither with 2.0 nor with standard node.js inherits.

If you are using version ~1.0 and planning to switch to ~2.0, be
careful:


	new version uses super_ instead of super for referencing
superclass


	new version overwrites current prototype while old one preserves any
existing fields on it







          

      

      

    

  

  
    

    interpret
    

    
 
  

    
      
          
            
  
  
    
  
  
    

    ipaddr.js — an IPv6 and IPv4 address manipulation library
    

    
 
  

    
      
          
            
  
ipaddr.js — an IPv6 and IPv4 address manipulation library [image: ../../_images/ipaddr.js.svg]Build Status [https://travis-ci.org/whitequark/ipaddr.js]

ipaddr.js is a small (1.9K minified and gzipped) library for manipulating
IP addresses in JavaScript environments. It runs on both CommonJS runtimes
(e.g. nodejs [http://nodejs.org]) and in a web browser.

ipaddr.js allows you to verify and parse string representation of an IP
address, match it against a CIDR range or range list, determine if it falls
into some reserved ranges (examples include loopback and private ranges),
and convert between IPv4 and IPv4-mapped IPv6 addresses.


Installation

npm install ipaddr.js

or

bower install ipaddr.js



API

ipaddr.js defines one object in the global scope: ipaddr. In CommonJS,
it is exported from the module:

var ipaddr = require('ipaddr.js');





The API consists of several global methods and two classes: ipaddr.IPv6 and ipaddr.IPv4.


Global methods

There are three global methods defined: ipaddr.isValid, ipaddr.parse and
ipaddr.process. All of them receive a string as a single parameter.

The ipaddr.isValid method returns true if the address is a valid IPv4 or
IPv6 address, and false otherwise. It does not throw any exceptions.

The ipaddr.parse method returns an object representing the IP address,
or throws an Error if the passed string is not a valid representation of an
IP address.

The ipaddr.process method works just like the ipaddr.parse one, but it
automatically converts IPv4-mapped IPv6 addresses to their IPv4 counterparts
before returning. It is useful when you have a Node.js instance listening
on an IPv6 socket, and the net.ivp6.bindv6only sysctl parameter (or its
equivalent on non-Linux OS) is set to 0. In this case, you can accept IPv4
connections on your IPv6-only socket, but the remote address will be mangled.
Use ipaddr.process method to automatically demangle it.



Object representation

Parsing methods return an object which descends from ipaddr.IPv6 or
ipaddr.IPv4. These objects share some properties, but most of them differ.


Shared properties

One can determine the type of address by calling addr.kind(). It will return
either "ipv6" or "ipv4".

An address can be converted back to its string representation with addr.toString().
Note that this method:


	does not return the original string used to create the object (in fact, there is
no way of getting that string)


	returns a compact representation (when it is applicable)




A match(range, bits) method can be used to check if the address falls into a
certain CIDR range.
Note that an address can be (obviously) matched only against an address of the same type.

For example:

var addr = ipaddr.parse("2001:db8:1234::1");
var range = ipaddr.parse("2001:db8::");

addr.match(range, 32); // => true





Alternatively, match can also be called as match([range, bits]). In this way,
it can be used together with the parseCIDR(string) method, which parses an IP
address together with a CIDR range.

For example:

var addr = ipaddr.parse("2001:db8:1234::1");

addr.match(ipaddr.parseCIDR("2001:db8::/32")); // => true





A range() method returns one of predefined names for several special ranges defined
by IP protocols. The exact names (and their respective CIDR ranges) can be looked up
in the source: IPv6 ranges [https://github.com/whitequark/ipaddr.js/blob/master/src/ipaddr.coffee#L186] and IPv4 ranges [https://github.com/whitequark/ipaddr.js/blob/master/src/ipaddr.coffee#L71]. Some common ones include "unicast"
(the default one) and "reserved".

You can match against your own range list by using
ipaddr.subnetMatch(address, rangeList, defaultName) method. It can work with a mix of IPv6 or IPv4 addresses, and accepts a name-to-subnet map as the range list. For example:

var rangeList = {
  documentationOnly: [ ipaddr.parse('2001:db8::'), 32 ],
  tunnelProviders: [
    [ ipaddr.parse('2001:470::'), 32 ], // he.net
    [ ipaddr.parse('2001:5c0::'), 32 ]  // freenet6
  ]
};
ipaddr.subnetMatch(ipaddr.parse('2001:470:8:66::1'), rangeList, 'unknown'); // => "tunnelProviders"





The addresses can be converted to their byte representation with toByteArray().
(Actually, JavaScript mostly does not know about byte buffers. They are emulated with
arrays of numbers, each in range of 0..255.)

var bytes = ipaddr.parse('2a00:1450:8007::68').toByteArray(); // ipv6.google.com
bytes // => [42, 0x00, 0x14, 0x50, 0x80, 0x07, 0x00, <zeroes...>, 0x00, 0x68 ]





The ipaddr.IPv4 and ipaddr.IPv6 objects have some methods defined, too. All of them
have the same interface for both protocols, and are similar to global methods.

ipaddr.IPvX.isValid(string) can be used to check if the string is a valid address
for particular protocol, and ipaddr.IPvX.parse(string) is the error-throwing parser.

ipaddr.IPvX.isValid(string) uses the same format for parsing as the POSIX inet_ntoa function, which accepts unusual formats like 0xc0.168.1.1 or 0x10000000. The function ipaddr.IPv4.isValidFourPartDecimal(string) validates the IPv4 address and also ensures that it is written in four-part decimal format.



IPv6 properties

Sometimes you will want to convert IPv6 not to a compact string representation (with
the :: substitution); the toNormalizedString() method will return an address where
all zeroes are explicit.

For example:

var addr = ipaddr.parse("2001:0db8::0001");
addr.toString(); // => "2001:db8::1"
addr.toNormalizedString(); // => "2001:db8:0:0:0:0:0:1"





The isIPv4MappedAddress() method will return true if this address is an IPv4-mapped
one, and toIPv4Address() will return an IPv4 object address.

To access the underlying binary representation of the address, use addr.parts.

var addr = ipaddr.parse("2001:db8:10::1234:DEAD");
addr.parts // => [0x2001, 0xdb8, 0x10, 0, 0, 0, 0x1234, 0xdead]





A IPv6 zone index can be accessed via addr.zoneId:

var addr = ipaddr.parse("2001:db8::%eth0");
addr.zoneId // => 'eth0'







IPv4 properties

toIPv4MappedAddress() will return a corresponding IPv4-mapped IPv6 address.

To access the underlying representation of the address, use addr.octets.

var addr = ipaddr.parse("192.168.1.1");
addr.octets // => [192, 168, 1, 1]





prefixLengthFromSubnetMask() will return a CIDR prefix length for a valid IPv4 netmask or
false if the netmask is not valid.

ipaddr.IPv4.parse('255.255.255.240').prefixLengthFromSubnetMask() == 28
ipaddr.IPv4.parse('255.192.164.0').prefixLengthFromSubnetMask()  == null





subnetMaskFromPrefixLength() will return an IPv4 netmask for a valid CIDR prefix length.

ipaddr.IPv4.subnetMaskFromPrefixLength(24) == "255.255.255.0"
ipaddr.IPv4.subnetMaskFromPrefixLength(29) == "255.255.255.248"





broadcastAddressFromCIDR() will return the broadcast address for a given IPv4 interface and netmask in CIDR notation.

ipaddr.IPv4.broadcastAddressFromCIDR("172.0.0.1/24") == "172.0.0.255"





networkAddressFromCIDR() will return the network address for a given IPv4 interface and netmask in CIDR notation.

ipaddr.IPv4.networkAddressFromCIDR("172.0.0.1/24") == "172.0.0.0"







Conversion

IPv4 and IPv6 can be converted bidirectionally to and from network byte order (MSB) byte arrays.

The fromByteArray() method will take an array and create an appropriate IPv4 or IPv6 object
if the input satisfies the requirements. For IPv4 it has to be an array of four 8-bit values,
while for IPv6 it has to be an array of sixteen 8-bit values.

For example:

var addr = ipaddr.fromByteArray([0x7f, 0, 0, 1]);
addr.toString(); // => "127.0.0.1"





or

var addr = ipaddr.fromByteArray([0x20, 1, 0xd, 0xb8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
addr.toString(); // => "2001:db8::1"





Both objects also offer a toByteArray() method, which returns an array in network byte order (MSB).

For example:

var addr = ipaddr.parse("127.0.0.1");
addr.toByteArray(); // => [0x7f, 0, 0, 1]





or

var addr = ipaddr.parse("2001:db8::1");
addr.toByteArray(); // => [0x20, 1, 0xd, 0xb8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]











          

      

      

    

  

  
    

    is-buffer
    

    
 
  

    
      
          
            
  
is-buffer [image: ../../_images/master43.svg]travis [https://travis-ci.org/feross/is-buffer] [image: ../../_images/is-buffer.svg]npm [https://npmjs.org/package/is-buffer] [image: ../../_images/is-buffer1.svg]downloads [https://npmjs.org/package/is-buffer] [image: ../../_images/f1896fcbdac8c2253770dcedb81221d2f5d37cea.svg]javascript style guide [https://standardjs.com]


Determine if an object is a Buffer [http://nodejs.org/api/buffer.html] (including the browserify Buffer [https://github.com/feross/buffer])

[image: ../../_images/is-buffer2.svg]saucelabs [https://saucelabs.com/u/is-buffer]



Why not use Buffer.isBuffer?

This module lets you check if an object is a Buffer without using Buffer.isBuffer (which includes the whole buffer [https://github.com/feross/buffer] module in browserify [http://browserify.org/]).

It’s future-proof and works in node too!



install

npm install is-buffer







usage

var isBuffer = require('is-buffer')

isBuffer(new Buffer(4)) // true

isBuffer(undefined) // false
isBuffer(null) // false
isBuffer('') // false
isBuffer(true) // false
isBuffer(false) // false
isBuffer(0) // false
isBuffer(1) // false
isBuffer(1.0) // false
isBuffer('string') // false
isBuffer({}) // false
isBuffer(function foo () {}) // false







license

MIT. Copyright (C) Feross Aboukhadijeh [http://feross.org].





          

      

      

    

  

  
    

    is-promise
    

    
 
  

    
      
          
            
  


is-promise

Test whether an object looks like a promises-a+ promise

[image: ../../_images/master44.svg]Build Status [https://travis-ci.org/then/is-promise]
[image: https://img.shields.io/gemnasium/then/is-promise.svg]Dependency Status [https://gemnasium.com/then/is-promise]
[image: ../../_images/is-promise.svg]NPM version [https://www.npmjs.org/package/is-promise]


Installation

$ npm install is-promise





You can also use it client side via npm.



API

var isPromise = require('is-promise');

isPromise({then:function () {...}});//=>true
isPromise(null);//=>false
isPromise({});//=>false
isPromise({then: true})//=>false







License

MIT





          

      

      

    

  

  
    

    <no title>
    

    
 
  

    
      
          
            
  This software is released under the MIT license:

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.



          

      

      

    

  

  
    

    is-typedarray
    

    
 
  

    
      
          
            
  
is-typedarray [image: ../../_images/locked.svg]locked [http://github.com/badges/stability-badges]

Detect whether or not an object is a
Typed Array [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Typed_arrays].


Usage

[image: ../../_images/is-typedarray.png]NPM [https://nodei.co/npm/is-typedarray/]


isTypedArray(array)

Returns true when array is a Typed Array, and false when it is not.




License

MIT. See LICENSE.md [http://github.com/hughsk/is-typedarray/blob/master/LICENSE] for details.





          

      

      

    

  

  
    

    The MIT License (MIT)
    

    
 
  

    
      
          
            
  
The MIT License (MIT)


Copyright (c) 2015 Rod Vagg

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.





          

      

      

    

  

  
    

    isStream
    

    
 
  

    
      
          
            
  
isStream

[image: ../../_images/isstream.png]Build Status [http://travis-ci.org/rvagg/isstream]

Test if an object is a Stream

[image: ../../_images/isstream.svg]NPM [https://nodei.co/npm/isstream/]

The missing Stream.isStream(obj): determine if an object is standard Node.js Stream. Works for Node-core Stream objects (for 0.8, 0.10, 0.11, and in theory, older and newer versions) and all versions of readable-stream [https://github.com/isaacs/readable-stream].


Usage:

var isStream = require('isstream')
var Stream = require('stream')

isStream(new Stream()) // true

isStream({}) // false

isStream(new Stream.Readable())    // true
isStream(new Stream.Writable())    // true
isStream(new Stream.Duplex())      // true
isStream(new Stream.Transform())   // true
isStream(new Stream.PassThrough()) // true







But wait! There’s more!

You can also test for isReadable(obj), isWritable(obj) and isDuplex(obj) to test for implementations of Streams2 (and Streams3) base classes.

var isReadable = require('isstream').isReadable
var isWritable = require('isstream').isWritable
var isDuplex = require('isstream').isDuplex
var Stream = require('stream')

isReadable(new Stream()) // false
isWritable(new Stream()) // false
isDuplex(new Stream())   // false

isReadable(new Stream.Readable())    // true
isReadable(new Stream.Writable())    // false
isReadable(new Stream.Duplex())      // true
isReadable(new Stream.Transform())   // true
isReadable(new Stream.PassThrough()) // true

isWritable(new Stream.Readable())    // false
isWritable(new Stream.Writable())    // true
isWritable(new Stream.Duplex())      // true
isWritable(new Stream.Transform())   // true
isWritable(new Stream.PassThrough()) // true

isDuplex(new Stream.Readable())    // false
isDuplex(new Stream.Writable())    // false
isDuplex(new Stream.Duplex())      // true
isDuplex(new Stream.Transform())   // true
isDuplex(new Stream.PassThrough()) // true





Reminder: when implementing your own streams, please use readable-stream rather than core streams [http://r.va.gg/2014/06/why-i-dont-use-nodes-core-stream-module.html].



License

isStream is Copyright (c) 2015 Rod Vagg @rvagg [https://twitter.com/rvagg] and licenced under the MIT licence. All rights not explicitly granted in the MIT license are reserved. See the included LICENSE.md file for more details.





          

      

      

    

  

  
    

    1.11.0 / 2015-06-12
    

    
 
  

    
      
          
            
  
1.11.0 / 2015-06-12


	Added block code support (@alephyud [https://github.com/alephyud])


	Improved runtime performance of mixins significantly (Andreas Lubbe [https://github.com/alubbe])


	Improved runtime performance of jade’s string escaping (Andreas Lubbe [https://github.com/alubbe]) and (@ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Better line number counting for pipeless text (@alephyud [https://github.com/alephyud])






1.10.0 / 2015-05-25


	Now supports jstransformers, which allows improved handling of embedded languages such as Coffee-Script, and deprecated Transformers support in filters - to be removed in 2.0.0 (@ForbesLindesay [http://www.forbeslindesay.co.uk/])


	CLI: added a flag to keep directory hierarchy when a directory is specified - this behavior will be the default in 2.0.0 (@TimothyGu [https://github.com/TimothyGu])


	disabled ‘compileDebug’ flag by default when used with express in production mode (Andreas Lubbe [https://github.com/alubbe])


	Fixed a memory leak on modern versions of Chrome as well as node 0.12 and iojs (Andreas Lubbe [https://github.com/alubbe])


	update website (@GarthDB [https://github.com/GarthDB])






1.9.2 / 2015-01-18


	Do not ignore some parser errors for mismatched parenthesis (@TimothyGu [https://github.com/TimothyGu])


	Warn for : that is not followed by a space (@ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Fix #1794 (a bizzare bug with a certain combination of inheritance, mixins and &attributes) (@ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Add compileClientWithDependenciesTracked (@ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Support comments in case blocks (@ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Fix blocks in nested mixins (@ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Lots more documentation (@enlore [https://github.com/enlore])


	Fix watching in CLI (@pavel [https://github.com/pavel])






1.9.1 / 2015-01-17


	Clean up path/fs functions in CLI as we no longer support node@0.6 (@TimothyGu [https://github.com/TimothyGu])


	Update commander (@TimothyGu [https://github.com/TimothyGu])


	Document cache and parser options (@TimothyGu [https://github.com/TimothyGu])


	Fix bug in 1.9.0 where we read the file if cache was enabled, even if a string was provided (@TimothyGu [https://github.com/TimothyGu])


	Fix year in changelog (@tomByrer [https://github.com/tomByrer])






1.9.0 / 2015-01-13


	Fix --watch sometimes dying when there were file-system errors (@ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Fix --watch by using fs.watchFile correctly (@TimothyGu [https://github.com/TimothyGu])


	Fix errors with using the CLI to compile from stdin


	Better looking badges (@TimothyGu [https://github.com/TimothyGu])


	Added --extension to CLI(@nicocedron [https://github.com/nicocedron] and @TimothyGu [https://github.com/TimothyGu])


	Refactor and improve internal cache handling (@TimothyGu [https://github.com/TimothyGu])


	Loads more tests (@TimothyGu [https://github.com/TimothyGu])






1.8.2 / 2014-12-16


	Use - as the default filename when using stdin on CLI (@TimothyGu [https://github.com/TimothyGu])


	Prevent some compiler errors being silenced (@ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Remove use of non-standard string.trimLeft() (@ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Fix bug in CLI when no name was provided for child template (@ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Remove dependency on monocle (hopefully fixing installation on 0.8) (@ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Add gitter chat room (@ForbesLindesay [http://www.forbeslindesay.co.uk/])






1.8.1 / 2014-11-30


	Fix corner case when the pretty option was passed a non-string truthy value (@TimothyGu [https://github.com/TimothyGu])


	Warn when lexer is given as an option (@TimothyGu [https://github.com/TimothyGu])


	Update dependencies (@TimothyGu [https://github.com/TimothyGu])






1.8.0 / 2014-11-28


	Fix empty text-only block (@rlidwka [https://github.com/rlidwka])


	Warn about future change to ISO 8601 style dates (@TimothyGu [https://github.com/TimothyGu] and @ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Add warnings when data-attributes contain ampersands (@TimothyGu [https://github.com/TimothyGu])


	Allow custom pretty indentation (@bfred-it [https://github.com/bfred-it])


	Add support for an object in the style attribute (@ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Add support for an object in the class attribute (@ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Ignore fs module in browser builds (@sokra [https://github.com/sokra])


	Update dependencies (@hildjj [https://github.com/hildjj])


	Check mixin arguments are valid JavaScript expressions (@ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Remove symlink (@slang800 [https://github.com/slang800])






1.7.0 / 2014-09-17


	Add Doctype option on command line (@ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Support ES6 style rest args in mixins (@ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Fix support for unicode newlines (\u2028, \u2029) (@rlidwka [https://github.com/rlidwka])


	Expose globals option from the with module (@sokra [https://github.com/sokra])


	Lots of new documentation (@ForbesLindesay [http://www.forbeslindesay.co.uk/])






1.6.0 / 2014-08-31


	Allow optional white space after + when calling a mixin (@char101 [https://github.com/char101])


	Use void-elements module to replace internal self-closing list (@hemanth [https://github.com/hemanth])


	Fix a warning that eroniously warned for un-used blocks if in an extending template from an include (Reported by @Dissimulazione [https://github.com/Dissimulazione])


	Fix mixins not working at end of file (@ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Fix error reporting when mixin block was followed by blank lines (@ForbesLindesay [http://www.forbeslindesay.co.uk/])






1.5.0 / 2014-07-23


	Added compileFile API (@ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Fix line number in un-used blocks warning (@ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Fix a warning that eroniously warned for un-used blocks if they were under another block (Reported by @pesho [https://github.com/pesho])






1.4.2 / 2014-07-16


	Fix a warning that eroniously warned for un-used blocks if they were under a “Code” element (Reported by @narirou [https://github.com/narirou])






1.4.1 / 2014-07-16


	Fix an error that sometimes resulted in ‘unexpected token “pipless-text”’ being erroniously thrown (Reported by @Artazor [https://github.com/Artazor] and @thenitai [https://github.com/thenitai])






1.4.0 / 2014-07-15


	Fix CLI so it keeps watching when errors occur (@AndrewTsao [https://github.com/AndrewTsao])


	Support custom names for client side templates (@ForbesLindesay [http://www.forbeslindesay.co.uk/] and @dscape [https://github.com/dscape])


	Allow whitepsace other than “space” before attributes passed to mixins (N.B. there is a small chance this could be a breaking change for you) (@regular [https://github.com/regular])


	Track dependencies so file watchers can be more clever (@ForbesLindesay [http://www.forbeslindesay.co.uk/] and @sdether [https://github.com/sdether])


	Allow passing options to filtered includes (@ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Fix bugs with indentation in filters (@ForbesLindesay [http://www.forbeslindesay.co.uk/] and @lackac [https://github.com/lackac])


	Warn on block names that are never used (@ForbesLindesay [http://www.forbeslindesay.co.uk/])






1.3.1 / 2014-04-04


	Fix error with tags in xml that are self-closing in html (@ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Fix error message for inline tags with content (@hiddentao [https://github.com/hiddentao])






1.3.0 / 2014-03-02


	Fix a bug where sometimes mixins were removed by an optimisation even though they were being called (@ForbesLindesay [http://www.forbeslindesay.co.uk/], reported by @leider [https://github.com/leider])


	Updated with to support automatically detecting when a value is “global” and removed redundant options.globals option (@ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Improve warnings for tags with multiple attributes (@ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Deprecate (with a warning) node.clone, block.replace, attrs.removeAttribute, attrs.getAttribute - these are all internal APIs for the AST (@ForbesLindesay [http://www.forbeslindesay.co.uk/])






1.2.0 / 2014-02-26


	Use variables instead of properties of jade, improving performance and reliability with nested templates (@ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Support compiling templates from stdin via a user typing (@yorkie [https://github.com/yorkie])


	Lazily add mixins (@ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Fix case fall-through (@ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Earlier errors for when without case and else without if (@ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Allow if/else etc. to not have a block.


	Remove lib-cov legacy to make browserify work better (@silver83 [https://github.com/silver83])


	Add and improve test coverage using istanbul (@ForbesLindesay [http://www.forbeslindesay.co.uk/])






1.1.5 / 2014-01-19


	Add filename to and fix line numbers for missing space before text warning (@ijin82)


	Fix filenames for some error reporting in extends/includes (@doublerebel)


	Fix a corner case where a mixin was called with &attributes but no other attributes and a block that was supposed to be fixed in 1.1.4 (@ForbesLindesay [http://www.forbeslindesay.co.uk/])






1.1.4 / 2014-01-09


	Fix a corner case where a mixin was called with &attributes but no other attributes and a block (@ForbesLindesay [http://www.forbeslindesay.co.uk/])






1.1.3 / 2014-01-09


	Fix failure of npm prepublish not running






1.1.2 / 2014-01-09


	Fix same interaction of &attributes with false null or undefined but combined with dynamic attributes (@ForbesLindesay [http://www.forbeslindesay.co.uk/])






1.1.1 / 2014-01-09


	Fix a bug when &attributes is combined with static attributes that evaluate to false or null or undefined (@ForbesLindesay [http://www.forbeslindesay.co.uk/])






1.1.0 / 2014-01-07


	Fix class merging to work as documented (@ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Throw an error when the same attribute is duplicated multiple times (@ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Move more errors into the parser/lexer so they have more info about line numbers (@ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Support mixin blocks at the end of files (@ForbesLindesay [http://www.forbeslindesay.co.uk/])






1.0.2 / 2013-12-31


	Fix a bug when &attributes is combined with dynamic attributes (@ForbesLindesay [http://www.forbeslindesay.co.uk/])






1.0.1 / 2013-12-29


	Allow self closing tags to contian whitespace (@ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Allow tags to have a single white space after them (@ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Support text bodies of tags that begin with // rather than treating them as comments (@ForbesLindesay [http://www.forbeslindesay.co.uk/])






1.0.0 / 2013-12-22


	No longer support node@0.8 (@ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Fix error reporting in layouts & includes (@ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Allow a list of ‘globals’ to be passed as an array at compile time & don’t automatically expose all globals (@ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Escape apostrophes in data attributes (@qualiabyte)


	Fix mixin/block interaction (@ForbesLindesay [http://www.forbeslindesay.co.uk/] & @paulyoung [https://github.com/paulyoung])


	Ignore trailing space after mixin declaration (@ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Make literal . work as expected (@ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Remove implicit text only for script/style (@ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Stop parsing comments and remove support for conditional comments (@ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Make filtering includes explicit (@ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Remove special assignment syntax (@ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Remove !!! shortcut for doctype (@ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Remove 5 shorcut for html doctype (@ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Remove colons option from the distant past (@ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Add a sepatate compileClient and compileFileClient to replace the client option (@ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Remove polyfills for supporting old browsers (@ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Allow interpolation for mixin names (@jeromew [https://github.com/jeromew]


	Use node.type instead of node.constructor.name so it can be minified (@ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Allow hyphens in filter names (@ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Throw an error if a self closing tag has content (@ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Support inline tags (@ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Replace attributes magic attribute with &attributes(attributes) (@ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Remove automatic tag wrapping for filters, you can just put the tags in yourself now (@ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Remove whitespace from tags nested inside pre tags (@markdalgleish [http://markdalgleish.com])






0.35.0 / 2013-08-21


	Add support for space separated attributes (thanks to @ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Add earlier errors for invalid JavaScript expressions (thanks to @ForbesLindesay [http://www.forbeslindesay.co.uk/])


	Fix parsing files with UTF8 BOMs when they are includes or parent/layout templates (thanks to @kiinoo [https://github.com/kiinoo])






0.34.1 / 2013-07-26


	fix render file not working when called with callback (reported by @xieren58 [https://github.com/xieren58])






0.34.0 / 2013-07-26


	callbacks only called once for async methods even if they throw (reported by @davidcornu [https://github.com/davidcornu])


	HTML comments are pretty printed better (thanks to @eddiemonge [https://github.com/eddiemonge])


	callbacks are optional and leaving them out results in synchronous operation (thanks to @ForbesLindesay [http://www.forbeslindesay.co.uk/])


	empty filter nodes are now permitted (thanks to @coderanger [https://github.com/coderanger])


	overhaul website and documentation (thanks to @ForbesLindesay [http://www.forbeslindesay.co.uk/]), much more of this to come.






0.33.0 / 2013-07-12


	Hugely more powerful error reporting (especially with compileDebug set explicitly to true)


	Add a warning for tags with multiple attributes


	be strict about requiring newlines after tags to fix some odd corner cases


	fix escaping of class to allow it to be unescaped (thanks to @christiangenco [https://github.com/christiangenco])






0.32.0 / 2013-06-28


	remove jade.version and fix jade --version


	add file name and line number to deprecation warnings


	use constantinople for better constant detection


	update with for a massive performance upgrade at compile time






0.31.2 / 2013-06-07


	fix overzealous deprecation warnings






0.31.1 / 2013-05-31


	fix line endings for executable command


	fix locals variable being undefined


	fix an obscure bug that could occur if multiple mixins interact badly (see substack/lexical-scope#13 [https://github.com/substack/lexical-scope/issues/13])






0.31.0 / 2013-05-30


	deprecate implicit text-only script and style tags


	make with at compile time using lexical-scope


	add options.parser that behaves exactly like options.compiler


	add “component.json” for component (runtime) support


	removed hasOwnProperty check in each loops


	removed .min files from the repository (people can just generate these themselves)


	use browserify to compile client side libraries


	fix buggy block extending should now be fixed


	fix preserve case of custom doctypes


	fix regexps in attributes sometimes not being accepted


	fix allow $ sign in each loop variable names


	fix mixins with buffered code on the same line


	fix separate class names by   rather than , (was sometimes incorrect)






0.30.0 / 2013-04-25


	add support for ‘include’ and ‘extends’ to use paths relative to basedir


	fix accidental calling of functions in iteration block. Closes #986


	fix: skip rethrow on client


	fix each/else prefixed with -


	fix multi-block prepend/append


	swap -o and -O, set -o to –out






0.29.0 / 2013-04-16


	add “monocle” for watcher that actually works…


	fix interpolation in blocks of text


	fix attribute interpolation


	move filters to an external library


	fix JavaScript escaping corner cases






0.28.2 / 2013-03-04


	wtf coffeescript is not a dep






0.28.1 / 2013-01-10


	add passing of filename to include filters


	fix wrong new lines for include filters






0.28.0 / 2013-01-08


	add .css and .js “filters”. re #438


	add include filters. Closes #283


	fix “class:” within attribute escaping


	removing ast filters


	things I can’t read:


	反馈地址


	样式


	联系


	初稿，翻译完


	接受大鸟的建议


	头晕，翻译一点点


	到过滤器翻译完毕


	翻译一部分


	中文翻译单独放


	特性部分


	再翻


	翻译一点点






0.27.7 / 2012-11-05


	fix each/else clause for enumerated objects


	fix #764 (incorrect line number for error messages)


	fix double-escaping of interpolated js slashes. Closes #784






0.27.6 / 2012-10-05


	Included templates can not override blocks of their parent. Closes #699






0.27.5 / 2012-09-24


	fix attr interpolation escaping. Closes #771






0.27.4 / 2012-09-18


	fix include yields. Closes #770






0.27.3 / 2012-09-18


	fix escaping of interpolation. Closes #769


	loosen “mkdirp” version restriction [TooTallNate]






0.27.2 / 2012-08-07


	Revert “fixing string interpolation escaping #731”, problems reported






0.27.1 / 2012-08-06


	fix attribute interpolation escaping #731


	fix string interpolation escaping #731






0.27.0 / 2012-07-26


	added ability to pass in json file to --obj


	add preliminary each else support. Closes #716


	fix doctype bug overlooked in #712


	fix stripping of utf-8 BOMs






0.26.3 / 2012-06-25


	Update version of commander that supports node v0.8.






0.26.2 / 2012-06-22


	Added –options alias of –obj


	Added reserved word conflict prevention in Google’s Closure Compiler


	Added tag interpolation. Closes #657


	Allow the compiled client to use it’s own jade util functions [3rd-Eden]


	Fixed attrs() escape bug [caseywebdev]






0.26.1 / 2012-05-27


	Changed default doctype to html5


	Performance: statically compile attrs when possible [chowey]


	Fixed some class attribute merging cases


	Fixed so block doesn’t consume blockquotes tag [chowey]


	Fixed backslashes in text nodes [chowey]


	Fixed / in text. Closes #638






0.26.0 / 2012-05-04


	Added package.json component support


	Added explicit self-closing tag support. Closes #605


	Added block statement


	Added mixin tag-like behaviour [chowey]


	Fixed mixins with extends [chowey]






0.25.0 / 2012-04-18


	Added preliminary mixin block support. Closes #310


	Fixed whitespace handling in various situations [chowey]


	Fixed indentation in various situations [chowey]






0.24.0 / 2012-04-12


	Fixed unescaped attribute compilation


	Fixed pretty-printing of text-only tags (Warning: this may affect rendering) [chowey]






0.23.0 / 2012-04-11


	Added data-attr json stringification support. Closes #572


	Added unescaped attr support. Closes #198


	Fixed #1070, reverted mixin function statements


	Fixed jade.1 typo






0.22.1 / 2012-04-04


	Fixed source tags. now self-closing. Closes #308


	Fixed: escape backslashes in coffeescript filter






0.22.0 / 2012-03-22


	Added jade manpage (man jade after installation for docs)


	Added -D, --no-debug to jade(1)


	Added -p, --pretty to jade(1)


	Added -c, --client option to jade(1)


	Fixed -o { client: true } with stdin


	Fixed: skip blank lines in lexer (unless within pipeless text). Closes #399






0.21.0 / 2012-03-10


	Added new input/output test suite using Mocha’s string diffing


	Added alias extend -> extends. Closes #527 [guillermo]


	Fixed include escapes. Closes #513


	Fixed block-expansion with .foo and #foo short-hands. Closes #498






0.20.3 / 2012-02-16


	Changed: pass .filename to filters only






0.20.2 / 2012-02-16


	Fixed :stylus import capabilities, pass .filename






0.20.1 / 2012-02-02


	Fixed Block#includeBlock() with textOnly blocks






0.20.0 / 2011-12-28


	Added a browser example


	Added yield for block includes


	Changed: replaced internal __ var with __jade [chrisleishman]


	Fixed two globals. Closes #433






0.19.0 / 2011-12-02


	Added block append / prepend support. Closes #355


	Added link in readme to jade-mode for Emacs


	Added link to python implementation






0.18.0 / 2011-11-21


	Changed: only [’script’, ‘style’] are text-only. Closes #398’






0.17.0 / 2011-11-